Tech Briefs

Researchers design X-ray imaging experiments to examine a weapon's high-speed penetration of dry particulate media.

When an Air Force bomber drops a penetrating munition, what happens as the warhead travels underground to the target? AFRL researchers at the Advanced Warhead Experimentation Facility (AWEF) recently captured X-ray images of laboratory-scale warheads as they penetrated sand targets at high speeds. These radiographs enhance the weapon design community's understanding of warhead/target interactions and aid in validating computer simulations as well.

To improve future warhead performance, AWEF researchers are striving to understand the physics behind a high-speed weapon's penetration of dry particulate media. The media under investigation undergoes very complex reactions during penetration because without the gluelike presence of moisture, the dry particles move freely with respect to each other. Consequently, the cavity formed around a high-speed projectile throughout its penetration collapses almost immediately after the projectile continues its progress. The diagnostic X-ray techniques that AFRL researchers are refining allow a glimpse of the temporary cavity, which provides a key indication of the penetration loading environment. Without knowledge of the physical interactions that occur during a weapon's penetration, weapon designers are limited to judging a new warhead's performance (e.g., penetration depth) through empirical trial-and-error methods. The incorporation of proven theoretical penetration models into advanced computer simulations will thus shorten the process of developing optimal warhead designs.

Image

The current research effort is an expansion of a related study conducted in the 1970s. The previous study examined cylindrical rods traveling at conventional velocities through an unconfined sand trough. The recent experimental series, conducted in 2005, examined a variety of conventional warhead nose shapes in their highspeed penetration of confined sand targets. The investigated nose shapes included a sharply pointed ogive nose (see Figure 1), a blunted ogive nose (see

Figure 2), and a spherical nose.