Tech Briefs

The facility satisfies requirements for accuracy, safety, capability, and standardization.

A small-scale combustion-chamber testing facility has been designed and partly built for use in evaluating advanced combustor designs for future gas turbine engines. The specific model combustor for which the facility was designed is an approximation of a planar section of an ultra-compact combustor (UCC). In the full-scale UCC (Figure 1), vanes in an annular cavity are positioned and oriented to cause the combustion gases to flow in a spiral pattern and the resulting centripetal acceleration in the cavity is utilized to increase the speed of combustion and thereby make it possible to design the combustion chamber to be shorter than would otherwise be necessary. In the model combustor, the spiral aspect of the flow is approximated by means of a small flow of air directed perpendicular to a main flow. The design of the facility and the model combustor provides access for off-axis optical (including visual) observation and measurement of cavity-vane interactions. The facility can also be used to test many other combustor models.

Figure 1. This Is a Rear View of the UCC, a model of which is the original one around which the facility is designed. The facility can also be used to test other model combustors.

The design of this facility reflects considerations of accuracy, capability, safety, and flexibility expressed by users of other facilities. All systems and measurements are designed to comply with Aerospace Recommended Practice 1256, which is a standard published by SAE International (formerly known as the Society of Automotive Engineers). The facility includes systems that help to maintain a safe work environment: these include automatic fuel shutoff, heater shutoff, and general power-shutoff subsystems. The facility can safely accommodate testing of model combustors for which open flames are required.