Tech Briefs

Race car drivers are providing crucial information that will aid measures to prevent serious neck injuries.

The bulletlike, open-wheel Indy racing cars hurtle around oval tracks at breakneck velocities, often approaching speeds of 220 mph or higher. While a crash at this speed is a violent, sometimes tragic event, it is nonetheless a key data source for AFRL researchers seeking ways to create a safer environment for Air Force (AF) fighter pilots during emergency ejection.

Instituting a practical alliance of human peril and scientific research, AFRL engineers are teaming with the Indy Racing League (IRL) to share crash impact and injury data. Indy car drivers wear a miniature earplug accelerometer (see figure) that records vertical, lateral, and longitudinal accelerations of the driver's head during a crash. "This data will provide valuable information for criteria and model validation," states Ms. Erica Doczy, biomedical engineer in AFRL's Biomechanics Branch. "We need reallive human injury data to validate our models and criteria. In the lab, you can't re-create that [trauma], so this is just one way to collect that data, because accidents do occur in the motor sports industry."

ImageThe data helps researchers learn more about the dynamics of a highspeed impact and the effects of acceleration and impact on a human's head and neck. Researchers typically create models based on manikin and cadaver testing, but data from living humans is essential for validating the models. With the availability of detailed information about the car's speed and movement, and how the driver's head reacts at each stage of a crash sequence, researchers no longer have to theorize about the exact nature and cause of head and neck injuries. "We'll know what the car did, we'll know what the driver's head did, and we'll have medical data (the end result), so it's a way of validating the entire [series of] criteria," explains Dr. Joseph Pellettiere, technical advisor for the Biomechanics Branch.

The agreement with the IRL builds upon AFRL's long-standing program for improving neck protection for AF aircrew members during all phases of flight, and especially during high-risk, emergency ejection. "We develop the injury criteria and guidelines for how a flight helmet should be developed in terms of its mass properties—such as weight, center of gravity, and location of night vision goggles or other systems— such that it's safe for crew members to wear," elaborates Dr. Pellettiere.