Despite the continuous development of new, higher performing processors, the thirst for increased embedded computing capability remains unquenched. In fact, it seems like Moore’s Law may have slowed when it comes to frequency but increased in terms of driving processor core and field programmable gate array (FPGA) LUTS counts. The previous need for fewer frequency increases has become a need for increased core counts, faster front side bus speeds, and greater support chip integration, all of which drive continually rising power requirements. Meeting these ever increasing "compute density escalations" while simultaneously maximizing thermal cooling efficiencies requires innovative packaging solutions.
Size Matters
Silicon chips continue to evolve. Figure 1 articulates how the ball grid array (BGA) ball quantities of server and mobile- class chips have continued to grow in package size as functionality is integrated into the processor or scaled into the FPGAs.
Each of these chips requires a different approach to dealing with this challenge. The smaller device demands an approach that controls the distribution of energy in a manner that does not add weight. The server-class chips are driving larger BGA ball counts and controlling the thermal heat spread of the chip with copper surfaces and volume to mass transfer energy to server-designed heat sinks. The size and weight is significantly different.
Thermal Densities — The Hidden Variables
Figure 3 shows some of the enormous challenges present in all three silicon technologies. The FLIR camera analysis shows that there are significant differences in the thermal heat generation in the silicon. This means that watts per square inch is no longer a sensible measure for linearly analyzing these challenges. When sophisticated computational fluid dynamic (CFD) software tools like Flotherm, Ice Pack, or others are utilized, linear energy distribution is not observed. Thermal energy density and the ability to mass transfer the concentrated heat is becoming a thermal analyst’s "Disneyland", where copper or diamonds are preferred due to their conductivity. The weight or costs of these technology implementations are outside the scope of this article. So, the images shown in Figure 3 illustrate how some of these chips require a new approach to cooling to help absorb these highly concentrated energy loads.
Agnostic Cooling
This approach affords engineers the ability to solve these complex thermal density challenges in various environments, with the same computational architecture. A VPX solution in a lab environment needs a certain cooling solution, while a VPX solution in ground radar, a mobile vehicle, a manned aircraft, or an unmanned aerial vehicle (UAV) need significantly different cooling solutions. An agnostic approach allows affordable rugged VPX cooling solutions to be used in each of these very different environments, while also saving precious design, development and deployment time.
Open Standards, VITA and Standardized Module Cooling
It’s here where the VMEbus Industry Trade Association (VITA) has really embraced cooling agnostics. VITA continues to drive standardized cooling technologies into VPX computational cooling to support these requirements. Below are some examples:
- VITA 48.1 supports air cooling.
- VITA 48.2 supports conduction cooling.
- VITA 48.3 is an open unfinished standard for liquid cooling.
- VITA 48.4 is a developing standard for liquid cooling.
- VITA 48.5 supports air flow through cooling.
- VITA 48.6 is an open standard for liquid cooling.
- VITA 48.7 supports Air Flow-By™ cooling.
- VITA 48.8 …What will it be?
Each of these cooling technologies has a direct impact on reliability through temperature impact and its associated direct variable of Coefficient of Thermal Expansion (CTE) impacts. As the power levels, thermal densities, and concentrated heat fluxes drive embedded systems forward, companies like Mercury Systems are driving mathematical high reliability cooling solutions to meet these ever increasing demands.
This article was written by Darryl McKenney, Vice President, Engineering Services Mercury Systems, Inc. (Chelmsford, MA). For more information, Click Here .