Defining an Open System Architecture Standard for Defense Systems

For many years now, there have been efforts within the US defense community to adopt “Open System Architecture” principles (or OSA) for defense computing platforms. Stretching back to the mid-2000’s there have been numerous efforts by all service branches to define sets of OSA principles or requirements on the embedded computing systems they procure and deploy. While these efforts have resulted in widespread adoption of POSIX functions for common tasks and a gradual shift in the use of common form factors and technologies such as VPX and Ethernet, there are still wide disparities between products from different suppliers, which creates difficulties for integrators. Product variations also make technology insertions or system configuration changes expensive, time consuming, and often locked to a particular vendor.

Posted in: Articles, Aerospace, Defense, Board-Level Electronics, Computers, Electronics, Electronics & Computers, Power Supplies, Data Acquisition, Sensors

Shape-Shifting Origami Could Help Antenna Systems Adapt On-the-Fly

Conventional reconfigurable electrical and radio frequency (RF) structures commonly used in applications involving real-time reconfigurability in response to fast varying operational scenarios require specialized substrates or complex electrical circuits. Origami-based RF reconfigurable components and modules offer a solution with unique properties. First, they enable re-configurability over continuous-state ranges (as opposed to discrete states). Second, they do not require specialized mechanical support for multilayer frequency-selective surface structures. Moreover, deployable origami-based RF structures can achieve large surface re-configurability ratios from folded to unfolded states. Finally, these structures allow for independent control of multiple figures of merit: bandwidth, frequency of operation, and angle of incidence.

Posted in: Articles, Aerospace, Communications, Defense, Electronic Components, Electronics, Electronics & Computers, Energy, Energy Harvesting, 3 D Printing & Additive Manufacturing, Manufacturing & Prototyping, Antennas, RF & Microwave Electronics, Semiconductors & ICs, Sensors

How Miniaturized Distributed Modular Architecture Advances Avionics Design

Most of today’s collision-avoidance, in-flight-entertainment (IFE), air-to-ground-communications, and other avionics systems employ electronics packaging based on the Aeronautics Radio INC (ARINC) 600 standard. Compared to the older ARINC 404 standard dating from the 1970s that defined “black box” enclosures and racks within aircraft, ARINC 600 specified a Modular Concept Unit (MCU) – the basic building block module for avionics. An ARINC 600 metal enclosure can hold up to 12 MCUs, allowing a lot of computing power to be placed in a centralized “box.” By making it possible to run numerous applications over a real-time network, ARINC 600 enabled “next generation” integrated modular avionics (IMA).

Posted in: Articles, Aeronautics, Aerospace, Aviation, Communications, Wireless, Data Acquisition, Defense, Internet of Things, Fastening, Joining & Assembly, Fiber Optics, Optics, Data Acquisition, Sensors

Pathfinder Radar ISR and SAR Systems: Tactical Eyes for the Warfighter

Sandia National Laboratories’ (Albuquerque, NM) Radar Intelligence, Surveillance and Reconnaissance (ISR) systems enable a new product paradigm in radar capabilities and modalities. With the ability to shrink sensor size, increase resolution, raise image quality, and advance realtime onboard processing, Sandia has been producing next-generation systems for nearly three decades. Sandia specializes in the full system design of Synthetic Aperture Radar (SAR), Ground Moving Target Indicator (GMTI), target recognition, and other sensor systems for the Department of Defense, other government agencies, and industry partners.

Posted in: Articles, Aeronautics, Aerospace, Aviation, Data Acquisition, Defense, Electronic Components, Electronics, Electronics & Computers, Imaging, Optical Components, Optics, Antennas, RF & Microwave Electronics, Data Acquisition

Answering Your Questions: What are New Missions for Military UAVs?

On the battlefield, you need to know as much as possible.

Posted in: Articles, Blog, Aeronautics, Aerospace, Aviation, Data Acquisition, Defense, Cameras, Imaging, Video, Data Acquisition, Sensors

The FACE™ of Military Modernization

U.S. rival countries have been rapidly modernizing their militaries, with publicized advances that pose credible challenges to U.S. supremacy in all aspects of warfare: air, land, sea, space and cyberspace. On January 19, 2018 Secretary Mattis discussed the National Defense Strategy and emphasized the need to modernize key capabilities to address these threats. He stated: “To keep pace with our times, the department will transition to a culture of performance and affordability that operates at the speed of relevance. Success does not go to the country that develops a new technology first, but rather, to the one that better integrates it and more swiftly adapts its way of fighting. Our current bureaucratic processes are insufficiently responsive to the department's needs for new equipment. We will prioritize speed of delivery, continuous adaptation and frequent modular upgrades.”

Posted in: Articles, Aeronautics, Aerospace, Aviation, Data Acquisition, Defense, Mechanical Components, Data Acquisition, Sensors, Software

Multi-Agent RF Propagation Simulator

A desirable interface between multi-agents is through over-the-air RF connections that include not only the intended direct RF communications paths but also highly variable multi-ray propagation, range attenuation, external RF influences, and near-earth influence. These influences are all difficult to predict, control, and repeat in an outdoor environment. This outdoor testing, as has traditionally been done, is extremely expensive while simultaneously providing fewer data points than more controlled events and the testing events are generally not repeatable.

Posted in: Articles, Aerospace, Communications, Data Acquisition, Antennas, RF & Microwave Electronics, Data Acquisition, Sensors, Simulation Software, Inspection Equipment, Instrumentation, Measuring Instruments, Monitoring, Test & Measurement, Testing Procedures

Panoramic Thermal Imaging Technology

SPYNEL sensors are passive wide area surveillance systems with automatic intrusion detection and tracking capabilities. The 360° thermal sensors offer 24/7 situational awareness by detecting and tracking an unlimited number of targets in real time, on land, air and sea. HGH Infrared Systems recently won a multi-million contract from a leading shipyard, to equip three new warships with the latest generation of SPYNEL panoramic thermal cameras.

Posted in: Articles, Aerospace, Defense, Cameras, Imaging, Mechanical Components, Optical Components, Optics, Detectors, Sensors

Underwater Drone Technology

Finding ways to overcome physical limitations so that humans can dive deeper and stay underwater longer has been an ongoing quest. Back in the 15th century, Leonardo Da Vinci drew sketches of a submarine and a robot. Had he thought to combine the two concepts, he would have created a prototype of an unmanned underwater vehicle, or underwater drone. Instead, the world had to wait another five hundred years.

Posted in: Articles, Aeronautics, Aerospace, Aviation, Communications, Defense, Power Management, Power Supplies, Cameras, Manufacturing & Prototyping, Motion Control, Power, Robotics, Sensors, Instrumentation, Transportation

Eyes In the Sky

Drones (i.e. quadrotors) are a popular and increasingly widespread product used by consumers as well as in a diversity of industrial, military and other applications. Historically under the control of human operators on the ground, they’re becoming increasingly autonomous as the cameras built into them find use not only for capturing footage of the world around them but also in understanding and responding to their surroundings. Combining imaging with other sensing modalities can further bolster the robustness of this autonomy.

Posted in: Articles, Aeronautics, Aerospace, Aviation, Defense, Imaging, Automation, Robotics, Sensors, Inspection Equipment, Measuring Instruments, Monitoring, Test & Measurement