Photonics

Nominal High-Altitude Electromagnetic Pulse (HEMP) Waveforms

Even before the Trinity nuclear test in July of 1945, physicists predicted a transient electromagnetic signal would be caused by high-energy photons released from the detonation interacting with the air around the detonation. Predictions of these signals were difficult to make due to the complexity of the physics unleashed by the detonation.

Posted in: Briefs, Aerospace, Defense, Photonics, RF & Microwave Electronics, Instrumentation, Measuring Instruments, Test & Measurement
Read More >>

Localization and Mapping of Unknown Locations with Unmanned Ground Vehicles

The main goals of this research are to enhance a commercial off-the-shelf (COTS) software platform to support unmanned ground vehicles (UGVs) exploring the complex environment of tunnels, to test the platform within a simulation environment, and to validate the architecture through field- testing.

Posted in: Briefs, Aerospace, Defense, Batteries, Cameras, Lasers & Laser Systems, Photonics, Automation, Robotics, Data Acquisition, Sensors, Simulation Software, Software, Transportation
Read More >>

Simulation of Active Imaging Systems

Active imaging systems offer the promise of significantly improved tactical performance compared to passive military systems operating in adverse ground, air, and underwater/ maritime environments. These improvements would include, but are not limited to:

Posted in: Briefs, Aerospace, Data Acquisition, Defense, Imaging, Lasers & Laser Systems, Simulation Software
Read More >>

Novel Characterization Methods for Anisotropic and Mixed-Conduction Materials

State-of-the-art electronic and optoelectronic devices require electronic materials with specialized properties that cannot be characterized with standard methods, or that must be characterized with extra precision. As a result of this research, the following new materials characterization methods have been developed:

Posted in: Briefs, Aerospace, Computers, Electronics, Electronics & Computers, Photonics
Read More >>

Spatial Resolution and Contrast of a Focused Diffractive Plenoptic Camera

The concept of an imaging system that captures both spatial and spectral information has existed for a while. An example of one such imaging system that encodes both location and wavelength into an image is a Fourier Transform Spectrometer (FTS).

Posted in: Briefs, Aerospace, Cameras, Imaging, Optical Components, Optics
Read More >>

Integrated Magneto-Optical Devices for On-Chip Photonic Systems

The magneto-optical (MO) oxide layer consists of (Bi,Y)3Fe5O12 or BiYIG, bismuth garnet. This material was selected because it has a better figure of merit than the CeYIG previously used, especially at lower wavelengths (1310 nm vs. 1550 nm). A top-down deposition process was developed in which BiYIG/YIG stacks are grown on the Si waveguide with YIG on top. The stack is annealed at 800°C/5 min to crystallize both layers, with the YIG templating the BiYIG leading to garnet phases rather than other oxides, and the BiYIG is directly on the Si waveguide. Initial attempts led to a film with Bi oxide phases, because the Bi was in excess and could not escape during the anneal as occurs in Si/YIG/BiYIG stacks. Hence the composition was adjusted to include slightly more Fe, which yielded films with only garnet peaks.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Electronic Components, Electronics, Electronics & Computers, Manufacturing & Prototyping, Materials, Optical Components, Optics, Photonics, Semiconductors & ICs
Read More >>

Low Power Optical Phase Array Using Graphene on Silicon Photonics

Despite enormous advances in integrated photonics over the last decade, an efficient integrated phase delay remains to be demonstrated. This problem is fundamental – most monolithic thin film deposition relies on centro symmetric materials (such as silicon, silicon dioxide, silicon nitride), which by definition do not have an electro-optic effect. Such materials have been shown to be excellent transparent materials, however they are either optically passive, or rely on very small plasma dispersion effect or power-hungry thermo-optic effect for tunability. These phase change materials have losses associated due to heating or carrier injection in the waveguides. This research shows that graphene can be used to provide electro-optic properties to traditionally passive optical materials.

Posted in: Briefs, Aerospace, Electronic Components, Electronics, Electronics & Computers, Materials, Optical Components, Optics, Photonics
Read More >>

Ultracompact, High-Speed Field-Effect Optical Modulators

The major goals of this research project included two parts. First, an ultracompact plasmonic electro-optical (EO) modulator was to be developed and investigated for efficient intensity modulation. Second, an ultracompact and high-speed EO modulator based on a dielectric platform was to be developed for straightforward integration with existing CMOS technology. Both modulators were targeted to facilitate next-generation interconnects for integrated photonic circuits.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Joining & Assembly, Mechanical Components, Optical Components, Optics, Photonics, Semiconductors & ICs
Read More >>

Low-Cost Ground Sensor Network for Intrusion Detection

Perimeter surveillance of forward operating locations, such as Forward Arming and Refueling Points (FARPs), is crucial to ensure the survivability of personnel and materiel. FARPs are frequently located well outside the protective cover of the main forward operating bases. Therefore, they must provide their own organic perimeter defenses. Such defenses are manpower intensive. Research shows how cheap, remote, unattended sensors using commercial off-the-shelf (COTS) components can help reduce the manpower requirement for this task and yet not compromise the security of the operating location.

Posted in: Briefs, Aerospace, Defense, Electronic Components, Electronics, Electronics & Computers, Power Management, Power Supplies, Cameras, Imaging, Manufacturing & Prototyping, Materials, Mechanical Components, MEMs, Optical Components, Optics, Power, Power Transmission, Propulsion, Data Acquisition, Detectors, Sensors
Read More >>

Co-Prime Frequency and Aperture Design for HF Surveillance, Wideband Radar Imaging, and Nonstationary Array Processing

A co-prime array uses two uniform linear subarrays to construct an effective difference coarray with certain desirable characteristics, such as a high number of degrees-of-freedom for DOA estimation. In this research, the co-prime array concept has been generalized with two operations.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Defense, Electronic Components, Electronics, Electronics & Computers, Power Management, Imaging, Manufacturing & Prototyping, MEMs, Optical Components, Optics, Power, Antennas, RF & Microwave Electronics, Sensors
Read More >>