MEMs

A Concept for Information Extraction From Remote Wireless Sensor Networks

Recent advances in the development of microsensors, microprocessors, information fusion algorithms, and ad hoc networking have led to increasingly capable wireless sensor networks. These networks, when deployed to monitor an urban area, show great promise in enhancing warfighter situational awareness. However, delivering the sensor network's collected information back to the proper decision makers is one network capability that still requires improvement. To bridge this gap between the tactical operations center and multiple wireless sensor networks distributed across a city, engineers must create a system-of-systems architecture. This architecture must permit a warfighter to receive near-real-time sensor information from an out-of-theater operating post, whether a mile or an ocean away. Research accomplished in efforts such as the Defense Advanced Research Projects Agency's (DARPA) Information Exploitation Office sponsored Networked Embedded Systems Technology (NEST) program has provided information gathering algorithms for wireless sensor networks that are independent of the hardware platform on which they run. Nevertheless, these networks have no means for publishing the massive amounts of information to the Global Information Grid (GIG). To address this publication requirement, AFRL engineers have begun integrating NEST technologies with the Joint Battlespace Infosphere (JBI).1, 2 They recently developed a proof-of-concept demonstration of this idea for Scientific Advisory Board (SAB) review. In this demonstration, they integrated a tracking application developed for the NEST program with the AFRL developed JBI Reference Implementation and showcased the resultant capability to connect low-level information gatherers to high-level information distributors.

Posted in: Briefs, Information Technology
Read More >>

Rapid Model Fabrication for Responsive Aerodynamic Experimental Research

Technicians machine traditional metal wind tunnel models in a process that can span months. Although these models are highly precise, the meticulously slow manufacturing process precludes a quick assessment regarding a new design's feasibility and thus impedes the ever-increasing need to help today's warfighter address constantly changing warfare threats. In support of the Integrated Rapid Aerodynamics Assessment program, AFRL has been exploring the impact of rapid prototyping (RP) technology in meeting this escalating need. According to AFRL's Mr. Gary Dale, an originator of this experimental research effort, "We were looking for a way to quickly generate experimental data that we could use to verify computational fluid dynamics (CFD) results. The CFD researchers were generating solutions in a matter of days or even hours, and they wanted to verify their solutions with [wind tunnel] experimental data." By producing a model in days—or possibly hours, depending upon model complexity—RP technology enables this concurrent study of air vehicle concepts via computer simulation and wind tunnel results.

Posted in: Briefs, Manufacturing & Prototyping
Read More >>

Collapsing and Closing Unmanned Air Vehicle Swarms

AFRL researchers are exploring an adaptive and reconfigurable unmanned air vehicle (UAV) swarm configuration known as "collapsing and closing UAV swarms." This approach to developing UAV swarms is suitable for a number of multifunction radio frequency (RF) applications in challenging environments such as urban and mountainous regions. Figures 1a-1c illustrate the basic approach. In Figure 1a, a long-range search UAV swarm collectively forms a scanning RF aperture. The swarm's scanning RF aperture interrogates a region of interest to detect high-clutter, discrete objects such as buildings or mountains. As depicted in Figure 1b, once the swarm detects these large, obscuring objects, it "collapses and closes" in on the region between the objects. This allows the swarm configuration to interrogate the embedded channels between the buildings or mountains to look for signal leakage points within these large objects, and once detected, these leakage points facilitate cavity interrogation.1 After the swarm has finished interrogating the embedded channels and cavities, it reconfigures itself for RF long-range remote sensing with regard to the next region of interest, as illustrated by Figure 1c.

Posted in: Briefs, Electronics & Computers
Read More >>

Eddy Current Inspection System

AFRL manufacturing technology engineers, working with personnel from the 76th Maintenance Wing's Software and Propulsion Maintenance Groups at the Oklahoma City Air Logistics Center (OC-ALC) and Wyle Laboratories (formerly Veridian Engineering), delivered a major configuration upgrade and improved the inspection process for the Air Force (AF) Eddy Current Inspection System (ECIS) at OC-ALC, Tinker Air Force Base (AFB), Oklahoma. These ECIS improvements are part of AFRL's Engine Rotor Life Extension program. With investments exceeding $80 million, the ECIS program addresses an AFRL initiative to extend the useful life of turbine engine components and reduce the cost of replacing aging engine components in the AF's fighter and bomber fleets.

Posted in: Briefs, Electronics & Computers
Read More >>

Super-High-Strength Aluminum Alloy

AFRL researchers developed a superhigh- strength aluminum alloy that engineers can use to improve the capability and performance of aerospace components—cryogenic rocket engine components, in particular. They created an aluminum alloy with specific strength and ductility characteristics surpassing those of the alpha titanium alloy currently used in rocket engine turbopumps. The aluminum alloy also demonstrates less sensitivity to hydrogen embrittlement, is lighter weight, and is potentially less costly to manufacture than the titanium alloy.

Posted in: Briefs, Materials
Read More >>

Recent Advances in Insensitive Munitions

AFRL scientists from the High Explosives Research and Development facility successfully developed, demonstrated, and transitioned a nextgeneration melt-castable explosive formulation. The new formulation, MNX-795, exhibits significantly improved insensitive munitions (IM) characteristics—a requirement for the formulation's intended use in the MK- 84 bomb.

Posted in: Briefs, Materials
Read More >>

Geopolymers

The use of ceramics in an ancient culture is one measure of that society's overall technical sophistication. Combining the study of ancient ceramics with modern science and technology has led to the creation of new ceramics with superior properties. Victor Glukhovsky, a scientist working in the Ukraine half a century ago, researched differences in the durability of ancient cements and more modern concretes. His work ultimately led to the synthesis of various aluminosilicate binders from clays, feldspars, volcanic ashes, and slags. These binders exhibited properties superior to those of the cementitious materials in common use at that time. Decades after Glukhovsky's discoveries, Ukrainian builders continued to employ aluminosilicate binders in construction applications, confirming their outstanding durability.

Posted in: Briefs, Materials
Read More >>

Composites Affordability Initiative

AFRL and Boeing have developed an innovative structural inspection technique for testing bonded structures. This technique provides materials engineers a first-time, validated, nondestructive capability to test for weak adhesive bonds and determine the minimum strength of adhesively bonded aerospace structures. The new method will enable aircraft designers to use bonded structures in a wider range of applications, and industry analysts predict it will provide both a 25% reduction in fabrication and assembly time and a 75% reduction in life-cycle costs.

Posted in: Briefs, Materials
Read More >>

AFRL Supports Desert Hawk Program

AFRL aeronautical engineers collaborated with the Electronic Systems Center's (ESC) Force Protection Program Office, Hanscom Air Force Base (AFB), Massachusetts, to conduct an in-house effort assessing the Desert Hawk small unmanned air vehicle's (SUAV) performance and exploring potential improvements to that performance. Desert Hawk, also known as the Force Protection Airborne Surveillance System (FPASS), performs air base perimeter defense and other intelligence, surveillance, and reconnaissance tasks.

Posted in: Briefs, Mechanical Components
Read More >>

Low-Cost Transmit/Receive Module for Satellite Control and Communications

A multidisciplinary team led by AFRL scientists is developing a geodesic dome phased-array antenna (GDPAA) for a proposed future Air Force (AF) technology demonstration.1 AFRL is also developing a second-generation S-band electronic scanning array (ESA) proof-of-concept (POC) panel to support the demonstration efforts.

Posted in: Briefs, Electronics & Computers
Read More >>