MEMs

3-D Manufacturing of Titanium Components Takes Off

MRO providers are discovering ways to innovate their procedures while remaining viable and profitable through the current downturn in government spending. Read more at http://articles.sae.org/13268.

Posted in: Articles, Aerospace, Defense, Mechanical Components
Read More >>

Trimming Wiring Harnesses Becomes Design Focus

Wires and cables help design teams add electronic features and functions, but networks and wiring harnesses add a fair amount of weight while their connections can be the cause of failures. That’s prompting developers to examine ways to reduce the size and weight of wires and cables. Read more at http://articles.sae.org/13419.

Posted in: Articles, Aerospace, Defense, Electronics
Read More >>

Carbon-Fiber Concept Trailer From Great Dane Cuts Weight by 4000 lb

The Walmart Advanced Vehicle Experience is a prototype tractor-trailer developed to demonstrate the possibilities of future transport, and the truck is not the only place where innovation reigns. The trailer body is built almost exclusively with carbon fiber, and it incorporates other technologies such as advanced adhesives and low-profile LED lighting. Read more at http://articles.sae.org/13507.

Posted in: Articles, Aerospace, Defense, Coatings & Adhesives, Materials, Transportation
Read More >>

Unmanned Ocean Drone

Liquid Robotics
Sunnyvale, CA
408-636-4200
www.liquidr.com

Accurately forecasting weather conditions and currents prior to mission deployment is an invaluable intelligence tool for the warfighter. Being able to accurately predict a Category-5 typhoon or hurricane, instead of a tropical storm, also saves lives, saves property, and saves time in evacuations. The Liquid Robotics' Wave Glider®, a surfboard-sized ocean drone filled with sensors, computers, and communications equipment, can survive a Category-5 typhoon while continuously collecting and transmitting meteorological and oceanographic data. Previously this type of data was unobtainable because it was too risky to send manned ships out in the middle of a hurricane/typhoon; buoys can become severely damaged or come off their moorings in such conditions; and satellites have difficulty seeing through the dense cloud cover.

Posted in: Application Briefs, Aerospace, Communications, Defense, Thermal Management, Data Acquisition, Robotics, Marine vehicles and equipment, Unmanned aerial vehicles
Read More >>

Continuous Sputter Deposition Coating of Long Monofilaments

A thin, uniform coating on long segments of monofilament could drastically improve the functionality of many complex fibers. A length of fishing line, microtubing, or polylactic acid (PLA) coated with copper could be left to cure within an epoxy, and upon removal of the monofilament, a narrow channel with a thin outer wall of copper would remain. That channel would be open for fluid flow, and also have a conductive shell. The “vascularized” material could be used for thermal management or self-healing composites.

Posted in: Briefs, Aerospace, Defense, Coatings & Adhesives, Materials, Thermal management, Adhesives and sealants, Coatings Colorants and Finishes, Copper, Fibers, Hoses
Read More >>

Hydrolytic Stability of Polyurethane-Coated Fabrics Used for Collapsible Fuel Storage Containers

Collapsible fabric fuel tanks have provided critical tactical bulk petroleum storage for military operations for over 50 years. Beginning in the 1940s with the 900 to 3,000-gallon pillow tanks, collapsible fabric tanks have evolved into the primary tactical fuel storage vessels now used by all of the military services.

Posted in: Briefs, Aerospace, Defense, Coatings & Adhesives, Materials, Containers, Storage, Coatings Colorants and Finishes, Fabrics, Fuel tanks, Military vehicles and equipment
Read More >>

Materials Design Principles for the Dynamic Fracture of Laminar Composite Structures

Crack bridging (e.g., from stitches or pins) and friction have profound and potentially very useful effects on delamination crack growth, controlling growth rates (damage levels) and the energy absorbed. However, the implications for structural design principles have remained quite obscure. The difficulty is that no simple analogue of crack toughness, which underpins static structural design, exists for dynamic cases with large-scale bridging effects. The external shape of the structure and the loading configuration dictate stress waves, frictional contact zones, and crack tip stress intensity factors in a way that is very difficult to approach, other than by brute case-specific numerical simulation. The problem is compounded by the common occurrence of multiple cracking, a complexity that is rarely entertained in laboratory fracture specimen design. Physically sound material models for the important structural problem of multiple, nonlinear cracking in laminated structures with large-scale bridging due to friction and reinforcement had previously remained undeveloped, in spite of the technological importance of these systems.

Posted in: Briefs, Aerospace, Defense, Electronics & Computers, Information Technology, Materials, Finite element analysis, Composite materials
Read More >>

Development of Hydrophobic Coatings for Water-Repellent Surfaces Using Hybrid Methodology

Coatings that impart hydrophobic properties are of considerable interest. For applications such as aircraft windows, optical components, protective eyewear, and clothing, this type of surface is desired for the material to be soil-repellent and waterresistant. A prime model of a surface with these characteristics can be found in nature – the leaves of the lotus flower have super-hydrophobic properties as a means of self-cleaning.

Posted in: Briefs, Aerospace, Defense, Coatings & Adhesives, Materials, Windows and windshields, Optics, Coatings Colorants and Finishes, Protective equipment
Read More >>

Researchers Develop Multiphysics Model for Electro-Thermal Analysis of UAV

Vives College University and Kulab (KU Leuven University campus Ostend) in Belgium are undertaking an aeronautical research program for the development of a new UAV aimed at performing scientific missions along the Belgian coastline above the North Sea. The main performance requirement of the UAV, dubbed Litus, is to be electrically powered with a range of 160 km and a payload up to 5 kg.

Posted in: Technology Update, Aerospace, Defense, Simulation Software, Simulation and modeling, Electrical systems, Thermal management, Unmanned aerial vehicles
Read More >>

Small, Sensitive Antennas

Researchers create metamaterials by carefully designing and fabricating novel structures to exhibit patterns of electromagnetic properties—specifically, dielectric permittivity and/or magnetic permeability—at the micro-or nano-scale. This special spatial arrangement of elements ensures that the volumetric arrays interact with electromagnetic fields in desirable ways.

Posted in: Technology Update, Aerospace, Defense, Antennas, Antennas
Read More >>