Mechanical Components

CAM Software Technology Keeps Pace with Aerospace Manufacturing Challenges

Aerospace industry component manufacturing is in a large growth cycle. Advancements to materials and engine efficiency have created clear benefits for replacing a surplus of older aircraft equipment. The advancements cover both engine and structural components. The demand is so significant that machine tool makers are challenged to supply equipment fast enough.

Posted in: Articles, Aerospace Manufacturing and Machining, Aeronautics, Aerospace, Aviation, Manufacturing & Prototyping, Machinery, Mechanical Components, Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM), Software
Read More >>

Co-Prime Frequency and Aperture Design for HF Surveillance, Wideband Radar Imaging, and Nonstationary Array Processing

A co-prime array uses two uniform linear subarrays to construct an effective difference coarray with certain desirable characteristics, such as a high number of degrees-of-freedom for DOA estimation. In this research, the co-prime array concept has been generalized with two operations.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Defense, Electronic Components, Electronics, Electronics & Computers, Power Management, Imaging, Manufacturing & Prototyping, MEMs, Optical Components, Optics, Power, Antennas, RF & Microwave Electronics, Sensors
Read More >>

Inertial Measurement Unit

Silicon Sensing Systems Ltd.
Plymouth, UK
+44 0 1752 723330
www.siliconsensing.com

Silicon Sensing Systems Ltd's latest DMU30 inertial measurement unit (IMU) has been chosen to provide highly accurate ship's attitude data to the autopilot that will navigate the ground-breaking Mayflower Autonomous Ship (MAS 400) as it travels the world.

Posted in: Application Briefs, Defense, Mechanical Components, MEMs, Detectors, Sensors
Read More >>

GPS Enabled Semi-Autonomous Robot

The primary objective of this research is to integrate GPS and local sensory data to allow a robot to operate semi-autonomously outside of a laboratory environment. The Pioneer 3-AT, a robust platform capable of operating in the outdoors, is utilized in this project. The P3-AT has acoustic sensors that can calculate distances to obstacles and encoders that calculate how much each wheel has turned. In a laboratory environment, sensory and encoder information can be used to triangulate position or measure distance and direction traveled from a known starting point. Operating outdoors limits the effectiveness of both systems as the obstacles are not known and wheels can often slip and slide on different surfaces. This necessitates external data to determine the location of the robot. GPS was chosen to provide that data. GPS, acoustic, and encoder data were integrated within MATLAB and provided control signals to the robot.

Posted in: Briefs, Aerospace, Communications, Data Acquisition, Defense, MEMs, Motion Control, Automation, Robotics, Data Acquisition, Sensors, Computer-Aided Design (CAD), Computer-Aided Engineering (CAE), Computer-Aided Manufacturing (CAM), Software, Transportation
Read More >>

Robotic Applique Kits Leverage Existing Assets

When it comes to modern military operations, robotic technology provides a tremendous tactical advantage. Drones, ground robots and autonomous vehicles are routinely used for missions such as intelligence-gathering, surveillance and reconnaissance (ISR), allowing military personnel to conduct operations from a safe distance. And yet, despite these technological advances, the vast majority of vehicles in use by the military — whether in the air or on land — still require a human operator.

Posted in: Articles, Aeronautics, Aerospace, Aviation, Data Acquisition, Cameras, Imaging, Machinery, Robotics, Data Acquisition, Sensors
Read More >>

Educating UGVs

Advancements in the field of artificial intelligence (AI) are accelerating as the technology matures from being research-orientated to being deployed in a wide range of products and services, such as autonomous vehicles. While Convolutional Neural Networks (CNNs) were first described in the 1950s, the technology remained an academic concept until the availability of large training data sets and powerful Graphics Processor Units (GPUs), a processor architecture ideal for the heavy math computational demands associated with neural network processing. Once scientists had low-cost and high-performance platforms, the technology exploded for many commercial uses. Military use is more challenging due to the lack of large data sets, but that is changing too as areas including thermal imagery are starting to be used.

Posted in: Articles, Aeronautics, Aerospace, Aviation, Data Acquisition, Computers, Electronics & Computers, PCs/Portable Computers, Thermal Management, Imaging, Machine Vision, Visualization Software, Machinery, Data Acquisition
Read More >>

Calculation of Weapon Platform Attitude and Cant Using Available Sensor Feedback

When firing artillery, there is typically a maximum angle that the platform cannot exceed relative to the Earth plane. This is due to the large recoil forces involved and the risk of destabilizing the platform the weapon is mounted to. Mobile systems are particularly sensitive to this as the attitude of the platform relative to Earth is constantly changing. A simple solution is to add pitch and roll sensors directly to the platform. However, many mobile systems already have an assortment of sensors that can be used to calculate the platform attitude.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Data Acquisition, Defense, Mechanical Components, MEMs, Data Acquisition, Sensors, Transportation
Read More >>

Natural DNA-Based Nonvolatile Resistive Switching Memory

Motivated by the demand for an even larger storage capacity in the information era, research efforts have been devoted to the development of more efficient and cost-effective memory elements.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Data Acquisition, Manufacturing & Prototyping, Composites, Materials, Mechanical Components, Data Acquisition
Read More >>

Content Addressable Memory (CAM) Technologies for Big Data and Intelligent Electronics Enabled By Magneto-Electric Ternary CAM

Content addressable memory (CAM) is one of the most promising hardware solutions for high-speed data searching and has many practical applications such as anti-virus scanners, internet protocol (IP) filters, and network switches. Since CAM stores the data in its internal memory elements and compares them with the search data in parallel, it can achieve much faster speed compared to the software lookup.

Posted in: Briefs, Aerospace, Communications, Data Acquisition, Defense, Electronic Components, Electronics & Computers, Energy Efficiency, Internet of Things, Materials, Metals, Mechanical Components, MEMs, Semiconductors & ICs, Data Acquisition, Sensors
Read More >>

New Products: February 2018 Aerospace & Defense Technology

Rugged Servers with Skylake Architecture

Themis Computer® (Fremont, CA) announced the launch of its next generation XR6 Rugged Enterprise Servers (RES) featuring the newest Intel® Xeon® Scalable (Skylake) Processors.

Posted in: Products, Aeronautics, Aviation, Data Acquisition, Defense, Board-Level Electronics, Computers, Electronic Components, Electronics, Electronics & Computers, Power Management, Power Supplies, Cameras, Imaging, Fastening, Joining & Assembly, Machinery, Mechanical Components
Read More >>