Mechanical Components

The Challenge of Replacing Hard Chrome

The search for a suitable replacement for hard chrome on aerospace components has been a key supply chain priority for aircraft manufacturers. This is because of the documented health risks to workers and the impact on the environment from exposure to hexavalent chromium, a carcinogen that occurs during the chrome plating process and is the most toxic form of chromium.

Posted in: Articles, Aeronautics, Aerospace, Aviation, Manufacturing & Prototyping, Coatings & Adhesives, Metals, Fastening, Joining & Assembly, Mechanical Components
Read More >>

Operational Considerations for High-Reliability Interconnects in Military and Aerospace Applications

In the recent past, military acquisition has shifted from being locked into large long-term contracts to developing complex systems in discrete increments that can be further optimized in future design cycles. These shorter design cycles allow for equipment to be deployed more rapidly, thereby mitigating the risk of subsystems going obsolete as increasing proportions of budget dollars go towards operation and support (O&S). This transition to evolutionary acquisition (EA) leaves a major opportunity for vendors to develop commercial off-the-shelf (COTS) components that are military-compliant.

Posted in: Articles, Aerospace, Manufacturing & Prototyping, Fastening, Joining & Assembly, Mechanical Components, RF & Microwave Electronics, Semiconductors & ICs, Test & Measurement
Read More >>

Understanding Fiber Optic Transceiver Design and Test Rules

The design of avionics systems must balance several factors. First, engineers want to increase the performance of the systems installed in aircraft or spacecraft. Second, they want to reduce the size and weight of the equipment that must be carried. Third, they want to maximize the safety of the in-flight systems and maintain communication between the aircraft or spacecraft and other flight vessels and the command center, regardless of the circumstances.

Posted in: Articles, Aeronautics, Aerospace, Aviation, Defense, Computers, Electronic Components, Electronics, Electronics & Computers, Thermal Management, Mechanical Components, Fiber Optics, Optical Components, Optics, Inspection Equipment, Instrumentation, Measuring Instruments, Monitoring, Test & Measurement, Testing Procedures
Read More >>

Microturbine Propulsion for UAVs

Seventy years ago, military aviation moved from reciprocating engines to vastly more reliable turbo jets and turboprops. Shortly after, the commercial air transport industry followed suit, enabling modern air transport. Today, virtually all large aircraft rely on turbine propulsion, yet small aircraft, both manned and unmanned, have not exploited the advantages of turbines for propulsion.

Posted in: Articles, Aeronautics, Aerospace, Aviation, Electronic Components, Electronics, Electronics & Computers, Power Management, Power Supplies, Mechanical Components, Power, Power Transmission, Propulsion
Read More >>

How Miniaturized Distributed Modular Architecture Advances Avionics Design

Most of today’s collision-avoidance, in-flight-entertainment (IFE), air-to-ground-communications, and other avionics systems employ electronics packaging based on the Aeronautics Radio INC (ARINC) 600 standard. Compared to the older ARINC 404 standard dating from the 1970s that defined “black box” enclosures and racks within aircraft, ARINC 600 specified a Modular Concept Unit (MCU) – the basic building block module for avionics. An ARINC 600 metal enclosure can hold up to 12 MCUs, allowing a lot of computing power to be placed in a centralized “box.” By making it possible to run numerous applications over a real-time network, ARINC 600 enabled “next generation” integrated modular avionics (IMA).

Posted in: Articles, Aeronautics, Aerospace, Aviation, Communications, Wireless, Data Acquisition, Defense, Internet of Things, Fastening, Joining & Assembly, Fiber Optics, Optics, Data Acquisition, Sensors
Read More >>

Preventing Ice Buildup on Electric Aircraft

Fuel economy is one of the biggest challenges facing the aviation industry. To overcome these challenges, researchers are working on next generation aviation systems.

Posted in: Articles, Aeronautics, Aerospace, Aviation, Power Management, Thermal Management, Cameras, Imaging, Composites, Materials, Fluid Handling, Mechanical Components, MEMs, Power, Power Transmission
Read More >>

Broadband 1.2- and 2.4-mm Gallium Nitride (GaN) Power Amplifier Designs

The US Army Research Laboratory (ARL) has been working with Raytheon to design efficient, broadband, linear, high-power amplifiers and robust, broadband, low-noise amplifiers for future adaptive, multimodal radar systems. Raytheon has a high-performance, W-band, gallium nitride (GaN) fabrication process and a process design kit (PDK) that ARL used to design low-noise amplifiers, power amplifiers, and other circuits for future radar, communications, and sensor systems. After the first set of ARL and Raytheon designs was submitted for fabrication, test designs of broadband Class A/B power amplifiers were developed. While these designs did not get fabricated in the initial effort, they serve to demonstrate the performance, bandwidth, and capability of this GaN process and could potentially be fabricated in the future.

Posted in: Articles, Aerospace, Defense, Electronic Components, Power Management, Power Supplies, Mechanical Components, RF & Microwave Electronics, Semiconductors & ICs
Read More >>

The FACE™ of Military Modernization

U.S. rival countries have been rapidly modernizing their militaries, with publicized advances that pose credible challenges to U.S. supremacy in all aspects of warfare: air, land, sea, space and cyberspace. On January 19, 2018 Secretary Mattis discussed the National Defense Strategy and emphasized the need to modernize key capabilities to address these threats. He stated: “To keep pace with our times, the department will transition to a culture of performance and affordability that operates at the speed of relevance. Success does not go to the country that develops a new technology first, but rather, to the one that better integrates it and more swiftly adapts its way of fighting. Our current bureaucratic processes are insufficiently responsive to the department's needs for new equipment. We will prioritize speed of delivery, continuous adaptation and frequent modular upgrades.”

Posted in: Articles, Aeronautics, Aerospace, Aviation, Data Acquisition, Defense, Mechanical Components, Data Acquisition, Sensors, Software
Read More >>

Coating Technology Enables Effective Missile Countermeasures

Heat-seeking missiles have been in use against both rotorcraft and fixed wing aircraft since the mid-1950s, and countermeasures to deceive their guidance systems have been employed for nearly as long. Typically, countermeasures operate by generating a strong infrared signature which confuses the missile tracking system. At the heart of these systems is some form of powerful infrared emitting source. Often this source requires optical coating(s) to perform wavelength filtering needed for optimum operation. However, both the mechanical configuration of the thin film filter coatings used and the operating extremes to which they are subjected present challenges for the manufacturer.

Posted in: Articles, Aerospace, Defense, Manufacturing & Prototyping, Coatings & Adhesives, Materials, Machinery, Mechanical Components
Read More >>

Panoramic Thermal Imaging Technology

SPYNEL sensors are passive wide area surveillance systems with automatic intrusion detection and tracking capabilities. The 360° thermal sensors offer 24/7 situational awareness by detecting and tracking an unlimited number of targets in real time, on land, air and sea. HGH Infrared Systems recently won a multi-million contract from a leading shipyard, to equip three new warships with the latest generation of SPYNEL panoramic thermal cameras.

Posted in: Articles, Aerospace, Defense, Cameras, Imaging, Mechanical Components, Optical Components, Optics, Detectors, Sensors
Read More >>