Machinery & Automation

NASA Tests Robotic Ice Tools

Since 2015, NASA's Jet Propulsion Laboratory in Pasadena, California, has been developing new technologies for use on future missions to ocean worlds. That includes a subsurface probe that could burrow through miles of ice, taking samples along the way; robotic arms that unfold to reach faraway objects; and a projectile launcher for even more distant samples. All these technologies were developed as part of the Ocean Worlds Mobility and Sensing study, a research project funded by NASA's Space Technology Mission Directorate in Washington. Each prototype focuses on obtaining samples from the surface - or below the surface - of an icy moon.

Posted in: News, Data Acquisition, Defense, Motion Control, Automation, Robotics
Read More >>

New Robotic System Finds and Destroys Explosive Threats

In combat, land mine and improvised explosive device (IED) clearance is a slow, painstaking, stressful job that physically and mentally drains soldiers and military working dogs. Technologies that seek out a variety of explosive hazards and IED components have matured in recent years to the point that semi-autonomous robots can detect, mark, and even destroy buried threats. The latest such system is called the Standoff Robotic Explosive Hazard Detection System (SREHD), and testing is currently underway at the U.S. Army Yuma Proving Ground (YPG).

Posted in: News, Defense, Robotics
Read More >>

Swarms of Autonomous Aerial Vehicles Test New Dogfighting Skills

Aerial dogfighting began more than a century ago in the skies over Europe with propeller-driven fighter aircraft carried aloft on wings of fabric and wood. An event held recently in southern California could mark the beginning of a new chapter in this form of aerial combat.

Posted in: News, Aeronautics, Aerospace, Aviation, Defense, Robotics
Read More >>

Language Learning Robot Could Advance Autonomous Vehicles

A Purdue University researcher and his team are developing technology to give robots the ability to learn language. A team led by Jeffrey Mark Siskind, associate professor in Purdue’s School of Electrical and Computer Engineering, has developed three algorithms that allow a wheeled robot to learn the meanings of words from example sentences that describe example paths taken by the robot, to use the words to generate a sentence to describe a path of movement, and to comprehend the sentence in order to produce a new path of movement.

Posted in: News, Defense, Robotics, Simulation Software, Software
Read More >>

High-Speed, Autonomous Surface Patrol Capability Demonstrated

After a year of internal research and development, the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, recently conducted a large, at-sea demonstration of swarming unmanned surface vessels (USV). The experiment — done in collaboration with the Surface Targets Branch of the Naval Air Warfare Center Weapons Division, Port Hueneme, California — was designed to advance the state of the art of collaborative, autonomous USV behaviors to higher speeds and a larger numbers of vessels.

Posted in: News, Robotics
Read More >>

Army Researchers Demonstrate 3-D Printed Drones

Soldiers witnessed the innovation of Army researchers recently during flight testing of 3-D printed unmanned aircraft systems that were created on-demand for specific missions.

Posted in: News, Robotics
Read More >>

Autonomous Underwater Munitions and Explosives of Concern Detection System

The objective of Environmental Security Technology Certification Program (ESTCP) Project MR-201002, Autonomous Underwater Vehicle (AUV) Munitions and Explosives of Concern (MEC) Detection System, was to integrate an untethered and unmanned underwater vehicle with a total field magnetometer for underwater munitions detection and upgrade magnetic noise compensation software to reduce interference from electrical and dynamic influences such as vehicle heading, pitch and roll.

Posted in: Briefs, Aerospace, Defense, Automation, Sensors and actuators, Noise, Hazards and emergency management, Autonomous vehicles, Marine vehicles and equipment
Read More >>

Power-Line UAV Modeling and Simulation

The Army Research Laboratory Power-Line Unmanned Aerial Vehicle (UAV) Modeling and Simulation (ARL-PLUMS) Software Tool allows a user to model, compute, and analyze the quasistatic electric and magnetic fields around alternating current (AC) power lines. ARL-PLUMS comes with an interactive graphical user interface (GUI), which accesses a compute engine to calculate these fields around these lines due to various ground and line geometries and load conditions. ARLPLUMS allows the user to rapidly define all significant model parameters and compute the electric and magnetic fields along a UAV path or in a cutting plane. In addition, a set of false-color plots can be created to show the time-varying nature of the fields as a movie. ARL-PLUMS also comes with an application programming interface (API) for accessing some of these features from MATLAB without using the GUI.

Posted in: Briefs, Aerospace, Defense, Automation, CAD / CAM / CAE, Electric cables, Human machine interface (HMI), Noise, Unmanned aerial vehicles
Read More >>

Design of a Multi-Segmented Magnetic Robot for Hull Inspection

Hull, deck plate, and tank inspection for corrosion, deformation, and fractures is a necessary part of ship maintenance to ensure functional integrity and proper operation of the ship. These inspections are labor intensive, expensive, and often dangerous. A multi-segmented magnetic wheeled robot can assist the surveyors in these tasks.

Posted in: Briefs, Aerospace, Defense, Automation, Maintenance, Repair and Service Operations, Robotics, Vehicle inspections, Marine vehicles and equipment
Read More >>

A Modular Approach to Video Designation of Manipulation Targets for Mobile Manipulators

Currently fielded EOD (explosive ordnance disposal) robots are limited in terms of both mechanical ability and autonomous capabilities when compared to the current state-of-the-art in mobile robotics. To combat this problem the Joint Service EOD Program is developing the Advanced EOD Robot System (AEODRS). AEODRS consists of three system variants that vary in size: small for dismounted operations, medium for tactical operations, and large for base/infrastructure operations. Differing from past EOD UGV development efforts, these robots will be designed under a modular architecture consisting of several capability modules that are to be developed separately.

Posted in: Briefs, Aerospace, Defense, Automation, Architecture, Robotics, Hazards and emergency management, Military vehicles and equipment
Read More >>