Tech Briefs

Spatial Resolution and Contrast of a Focused Diffractive Plenoptic Camera

The concept of an imaging system that captures both spatial and spectral information has existed for a while. An example of one such imaging system that encodes both location and wavelength into an image is a Fourier Transform Spectrometer (FTS).

Posted in: Briefs, Aerospace, Cameras, Imaging, Optical Components, Optics
Read More >>

Integrated Magneto-Optical Devices for On-Chip Photonic Systems

The magneto-optical (MO) oxide layer consists of (Bi,Y)3Fe5O12 or BiYIG, bismuth garnet. This material was selected because it has a better figure of merit than the CeYIG previously used, especially at lower wavelengths (1310 nm vs. 1550 nm). A top-down deposition process was developed in which BiYIG/YIG stacks are grown on the Si waveguide with YIG on top. The stack is annealed at 800°C/5 min to crystallize both layers, with the YIG templating the BiYIG leading to garnet phases rather than other oxides, and the BiYIG is directly on the Si waveguide. Initial attempts led to a film with Bi oxide phases, because the Bi was in excess and could not escape during the anneal as occurs in Si/YIG/BiYIG stacks. Hence the composition was adjusted to include slightly more Fe, which yielded films with only garnet peaks.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Electronic Components, Electronics, Electronics & Computers, Manufacturing & Prototyping, Materials, Optical Components, Optics, Photonics, Semiconductors & ICs
Read More >>

Low Power Optical Phase Array Using Graphene on Silicon Photonics

Despite enormous advances in integrated photonics over the last decade, an efficient integrated phase delay remains to be demonstrated. This problem is fundamental – most monolithic thin film deposition relies on centro symmetric materials (such as silicon, silicon dioxide, silicon nitride), which by definition do not have an electro-optic effect. Such materials have been shown to be excellent transparent materials, however they are either optically passive, or rely on very small plasma dispersion effect or power-hungry thermo-optic effect for tunability. These phase change materials have losses associated due to heating or carrier injection in the waveguides. This research shows that graphene can be used to provide electro-optic properties to traditionally passive optical materials.

Posted in: Briefs, Aerospace, Electronic Components, Electronics, Electronics & Computers, Materials, Optical Components, Optics, Photonics
Read More >>

Ultracompact, High-Speed Field-Effect Optical Modulators

The major goals of this research project included two parts. First, an ultracompact plasmonic electro-optical (EO) modulator was to be developed and investigated for efficient intensity modulation. Second, an ultracompact and high-speed EO modulator based on a dielectric platform was to be developed for straightforward integration with existing CMOS technology. Both modulators were targeted to facilitate next-generation interconnects for integrated photonic circuits.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Joining & Assembly, Mechanical Components, Optical Components, Optics, Photonics, Semiconductors & ICs
Read More >>

Inter-Laboratory Combat Helmet Blunt Impact Test Method Comparison

As the medical community learns more about brain injury, the importance of blunt impact mitigation becomes more apparent. As such, it is critical to make sure that research labs are not only capable of performing testing in this field, but also show inter-laboratory consistency and reproducibility. This study is a comparison between the two validated blunt impact testing labs (Aberdeen Test Center (ATC) and National Technical Systems (NTS) Chesapeake Testing Services (CTS)), and Natick Soldier Research Development and Engineering Center (NSRDEC).

Posted in: Briefs, Aerospace, Data Acquisition, Defense, Data Acquisition, Inspection Equipment, Instrumentation, Measuring Instruments, Monitoring, Test & Measurement, Testing Procedures
Read More >>

Hydraulic Testing of Polymer Matrix Composite 102mm Tube Section

The objective of this research was to hydraulically pressurize the internal diameter of one 102mm Polymer Matrix Composite (PMC) over-wrapped cylinder up to 25,000 pounds per square inch (psi) and during pressurization, in real time, collect and store pressure and strain data simultaneously. Strain data must be captured from the inside diameter of the oil filled metallic cylinder and from the outside diameter of the composite over-wrap material.

Posted in: Briefs, Aerospace, Data Acquisition, Electronic Components, Electronics, Electronics & Computers, Manufacturing & Prototyping, Composites, Materials, Metals, Joining & Assembly, Mechanical Components, Inspection Equipment, Instrumentation, Measuring Instruments, Monitoring, Test & Measurement
Read More >>

Permeation Tests on Polypropylene Fiber Materials

The Toxic Industrial Chemical/Toxic Industrial Material (TIC/TIM) Task Force MFR#1 published in February 2009 focuses on inhalation hazards in an operational environment and provides a list of compounds prioritized based on toxic hazard and the likelihood of an encounter. With these types of vapor threats, cartridge-based air purifying respirators are used to protect the warfighter against chemical exposure. Traditional air purification materials often rely on porous carbons such as activated carbon or activated charcoal. Ongoing efforts seek to improve the performance of carbon materials in air purification applications as well as provide alternative materials.

Posted in: Briefs, Aerospace, Data Acquisition, Alternative Fuels, Energy, Energy Efficiency, Energy Harvesting, Energy Storage, Renewable Energy, Materials, Nanotechnology
Read More >>

Low-Cost Ground Sensor Network for Intrusion Detection

Perimeter surveillance of forward operating locations, such as Forward Arming and Refueling Points (FARPs), is crucial to ensure the survivability of personnel and materiel. FARPs are frequently located well outside the protective cover of the main forward operating bases. Therefore, they must provide their own organic perimeter defenses. Such defenses are manpower intensive. Research shows how cheap, remote, unattended sensors using commercial off-the-shelf (COTS) components can help reduce the manpower requirement for this task and yet not compromise the security of the operating location.

Posted in: Briefs, Aerospace, Defense, Electronic Components, Electronics, Electronics & Computers, Power Management, Power Supplies, Cameras, Imaging, Manufacturing & Prototyping, Materials, Mechanical Components, MEMs, Optical Components, Optics, Power, Power Transmission, Propulsion, Data Acquisition, Detectors, Sensors
Read More >>

Co-Prime Frequency and Aperture Design for HF Surveillance, Wideband Radar Imaging, and Nonstationary Array Processing

A co-prime array uses two uniform linear subarrays to construct an effective difference coarray with certain desirable characteristics, such as a high number of degrees-of-freedom for DOA estimation. In this research, the co-prime array concept has been generalized with two operations.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Defense, Electronic Components, Electronics, Electronics & Computers, Power Management, Imaging, Manufacturing & Prototyping, MEMs, Optical Components, Optics, Power, Radar/LiDAR Systems, Antennas, RF & Microwave Electronics, Sensors
Read More >>

Converting Existing Copper Wire Firing System to a Fiber-Optically Controlled Firing System for Electromagnetic Pulsed Power Experiments

After extensive review from the US Army Research Laboratory (ARL) Electrical Safety Office, it was determined that the existing firing system in Experimental Facility 167 (EF 167) was not adequate to safely perform pulsed-power experiments with gunpowder- or air-driven guns. This firing line used solid copper wire, which provided a continuous electrical conduction path between the high-voltage capacitor in the test chamber and the firing/control room, where personnel are stationed when experiments are performed (Figure 1). This poses a safety risk since high voltage can travel from the test chamber and potentially result in personnel injuries and damaged equipment.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Automotive, Defense, Electronic Components, Electronics, Electronics & Computers, Power Management, Power Supplies, Materials, Metals, Mechanical Components, Power, Power Transmission, Inspection Equipment, Instrumentation, Measuring Instruments, Monitoring, Test & Measurement, Automotive, Transportation
Read More >>

In-Network Processing on Low-Cost IoT Nodes for Maritime Surveillance

The effective distribution of offensive weapon capabilities to naval units at the tactical edge is a critical focus for Navy leaders. A direct byproduct of this priority is the need to employ sensor and data collection systems that can effectively guide the targeting of that offensive capability. In the recent past, wireless sensor networks have received limited use in the maritime domain due to the exploratory nature of technology, high system complexity and the high cost of system deployment. With the Internet-of-Things revolution, commercially available hardware and software components can be used to build low-cost, reliable, disposable wireless sensor networks that can leverage in-network processing schemes to greatly expand the intelligence collection footprint.

Posted in: Briefs, Aerospace, Communications, Wireless, Data Acquisition, Defense, Electronic Components, Electronics, Electronics & Computers, Internet of Things, Mechanical Components, MEMs, Sensors, Computer-Aided Design (CAD), Computer-Aided Engineering (CAE), Computer-Aided Manufacturing (CAM), Software
Read More >>

Advancements Made to the Wingman Software-in-the-Loop (SIL) Simulation: How to Operate the SIL

The US Army Research Laboratory (ARL), US Army Tank Automotive Research Development and Engineering Center (TARDEC), DCS Corp., and Naval Surface Warfare Center Dahlgren Division (NSWCDD) worked together to advance the capabilities of a software-in-the-loop (SIL) simulation environment in support of the larger TARDEC-Wingman Joint Capabilities Technology Demonstration (JCTD).

Posted in: Briefs, Aerospace
Read More >>

Soft Robotic Fish Swims Alongside Real Ones in Coral Reefs

A team from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) unveiled “SoFi,” a soft robotic fish that can independently swim alongside real fish in the ocean. During test dives in the Rainbow Reef in Fiji, SoFi swam at depths of more than 50 feet for up to 40 minutes, nimbly handling currents and taking high-resolution photos and videos using a fisheye lens.

Posted in: Briefs, Aerospace
Read More >>

Soldier-Robot Team Communication: An Investigation of Exogenous Orienting Visual Display Cues and Robot Reporting Preferences

The advancement of robot capabilities and functionality has changed the way in which soldiers perform many of their operational tasks. The various unmanned air, ground, and submersible vehicles currently deployed have significantly impacted present-day warfare.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Communications, Wireless, Defense, Industrial Controls & Automation, Manufacturing & Prototyping, Automation, Robotics, Test & Measurement, Automotive, Transportation
Read More >>

GPS Enabled Semi-Autonomous Robot

The primary objective of this research is to integrate GPS and local sensory data to allow a robot to operate semi-autonomously outside of a laboratory environment. The Pioneer 3-AT, a robust platform capable of operating in the outdoors, is utilized in this project. The P3-AT has acoustic sensors that can calculate distances to obstacles and encoders that calculate how much each wheel has turned. In a laboratory environment, sensory and encoder information can be used to triangulate position or measure distance and direction traveled from a known starting point. Operating outdoors limits the effectiveness of both systems as the obstacles are not known and wheels can often slip and slide on different surfaces. This necessitates external data to determine the location of the robot. GPS was chosen to provide that data. GPS, acoustic, and encoder data were integrated within MATLAB and provided control signals to the robot.

Posted in: Briefs, Aerospace, Communications, Data Acquisition, Defense, MEMs, Motion Control, Automation, Robotics, Data Acquisition, Sensors, Computer-Aided Design (CAD), Computer-Aided Engineering (CAE), Computer-Aided Manufacturing (CAM), Software, Transportation
Read More >>

Development of a Vision-Based Situational Awareness Capability for Unmanned Surface Vessels

Using unmanned surface vessels (USVs) for “dull, dirty and dangerous missions” is gaining traction in recent years as it removes the human element from a potentially life-threatening environment in missions such as mine hunting or maritime interdiction. Current USVs rely on human operators sitting in remote control stations to monitor the vessels’ surroundings and perform collision detection and avoidance. This reliance on the human operator constrains the operating envelope of the USV as it requires a high bandwidth and low latency communication link for safe operations, especially in waters with heavy traffic.

Posted in: Briefs, Aerospace, Defense, Imaging, Machine Vision, Video, Automation, Robotics, Simulation Software, Transportation
Read More >>

Designing for Compressive Sensing: Compressive Art, Camouflage, Fonts, and Quick Response Codes

Compressive sensing (CS) is a relatively new field that has caused a lot of excitement in the signal processing community. It has superseded Shannon's time-honored sampling theorem, which states that the sampling rate of a signal must be at least twice its highest frequency. In CS, the necessary sampling rate depends on the sparsity of signal, not its highest frequency, reducing sampling requirements for many signals that exhibit natural sparsity. This compression happens on the hardware level, allowing systems to be designed with benefits ranging from increased resolution and frame rates to decreased power consumption and memory usage. Despite this enthusiasm for CS and the large quantity of research being performed, the number of commercial systems that use CS is relatively few. The problem of designing a CS strategy that increases functionality while actually reducing overall system cost has not been solved in many areas. This is a developing field where not only are new applications for CS still being developed, but also fundamental aspects of CS theory are still evolving.

Posted in: Briefs, Aerospace, Defense, Electronic Components, Electronics, Electronics & Computers, Energy, Energy Efficiency, Imaging, Fiber Optics, Optical Components, Optics, Data Acquisition, Sensors
Read More >>

Calculation of Weapon Platform Attitude and Cant Using Available Sensor Feedback

When firing artillery, there is typically a maximum angle that the platform cannot exceed relative to the Earth plane. This is due to the large recoil forces involved and the risk of destabilizing the platform the weapon is mounted to. Mobile systems are particularly sensitive to this as the attitude of the platform relative to Earth is constantly changing. A simple solution is to add pitch and roll sensors directly to the platform. However, many mobile systems already have an assortment of sensors that can be used to calculate the platform attitude.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Data Acquisition, Defense, Mechanical Components, MEMs, Data Acquisition, Sensors, Transportation
Read More >>

Validation of Automated Prediction of Blood Product Needs Algorithm Processing Continuous Non-Invasive Vital Signs Streams (ONPOINT4)

Hemorrhagic shock occurs frequently in natural and man-made disaster scenarios. To control bleeding and to provide necessary resuscitation, swift and accurate diagnosis and decision-making are required. Early recognition of bleeding and the need for targeted interventions could improve both survival and resource management, allowing the receiving hospital to prepare required blood, surgeons, or other resources in advance of patient arrival and to conserve valuable resources in those patients who are not bleeding. Resources can be saved through avoidance of over-triage, thereby reducing unnecessary air transport, unnecessary blood transfusions, and unnecessary evaluation with labs, X-rays, and computed tomography scans, which is important in all resource-constrained and austere environments.

Posted in: Briefs, Aerospace, Data Acquisition, Defense, Industrial Controls & Automation, Manufacturing & Prototyping, Diagnostics, Patient Monitoring, Data Acquisition, Sensors
Read More >>

Phonon Confinement Effect in TiO2 Nanoparticles as Thermosensor Materials

TiO2 or ZnO nanoparticles (NPs) have a very strong finite-size dependency in their Raman spectra or photoluminescence (PL) spectra due to the phonon confinement effect or the quantum confinement effect. Together with a fast grain growth kinetics and a high stability under high temperature and pressure, they can forensically retain the complete thermal history of an event. By spatially distributing these NPs during thermal events such as blasts or weapon tests, a spatially and temporally non-uniform thermal environment can be determined by a direct read off their Raman or PL spectra at various locations.

Posted in: Briefs, Aerospace, Defense, Thermal Management, Materials, Nanotechnology, Photonics, Force Sensors and Resistors, Sensors, Test & Measurement
Read More >>

Natural DNA-Based Nonvolatile Resistive Switching Memory

Motivated by the demand for an even larger storage capacity in the information era, research efforts have been devoted to the development of more efficient and cost-effective memory elements.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Data Acquisition, Manufacturing & Prototyping, Composites, Materials, Mechanical Components, Data Acquisition
Read More >>

Content Addressable Memory (CAM) Technologies for Big Data and Intelligent Electronics Enabled By Magneto-Electric Ternary CAM

Content addressable memory (CAM) is one of the most promising hardware solutions for high-speed data searching and has many practical applications such as anti-virus scanners, internet protocol (IP) filters, and network switches. Since CAM stores the data in its internal memory elements and compares them with the search data in parallel, it can achieve much faster speed compared to the software lookup.

Posted in: Briefs, Aerospace, Communications, Data Acquisition, Defense, Electronic Components, Electronics & Computers, Energy Efficiency, Internet of Things, Materials, Metals, Mechanical Components, MEMs, Semiconductors & ICs, Data Acquisition, Sensors
Read More >>

pH-Dependent Spin State Population and 19F NMR Chemical Shift Via Remote Ligand Protonation in An Iron(II) Complex

The development of transition metal-based molecules and materials that can be switched between low-spin and high-spin electronic states has constituted a highly active area of research over the past several decades. Indeed, the magnetic bistability of such spin-crossover compounds make them potential candidates for molecular switches and chemical sensors, as the spin transition can be controlled by a number of external stimuli, such as temperature, pressure, and light.

Posted in: Briefs, Aerospace, Defense, Electronic Components, Electronics, Electronics & Computers, Materials, Metals, Data Acquisition, Sensors, Measuring Instruments, Test & Measurement
Read More >>

A Mechanistic Analysis of Oxygen Vacancy Driven Conductive Filament Formation in Resistive Random Access Memory Metal/NiO/Metal Structures

Resistive Random Access Memory (RRAM) devices have drawn much interest in the last decade, particularly the concept of a memristor. In this case, the so-called memristance, which provides the relationship between the change in charge (time integral of the current) and flux (time integral of the voltage), is not a constant as in linear elements, but a function of the charge, resulting in a nonlinear circuit element. Applications of such two-terminal electrical devices that provide high densities and low-power operation include, for instance, neuromorphic-type computing elements.

Posted in: Briefs, Aeronautics, Aerospace, Aviation, Defense, Electronic Components, Electronics, Electronics & Computers, Manufacturing & Prototyping, Materials, Metals, Simulation Software, Software
Read More >>

High Temperature Graphene-Peek Adhesive

Joining of composites can be a challenging issue. If adhesives are used, the joints are permanent and cannot be undone. If they need to be undone, inserts are often used and these inserts increase cost and weight. Additionally, fibers can be cut in the process leading to a part with weakened mechanical properties.

Posted in: Briefs, Aerospace, Joining, Adhesives and sealants, Composite materials, Materials properties
Read More >>

Bioinspired Surface Treatments for Improved Decontamination: Commercial Products

In January 2015, the Center for Bio/Molecular Science and Engineering at the Naval Research Laboratory (NRL) began an effort to evaluate and develop top-coat type treatments suitable for application to painted surfaces that would reduce retention of chemical threat agents following standard decontamination approaches. Four commercially available surface treatments were evaluated: NANOskin Hydro Express, Rust-Oleum® NeverWet®, Eagle One Superior NanoWax™, and Rust-Oleum® Wipe New.

Posted in: Briefs, Aerospace, Coatings Colorants and Finishes, Hazardous materials, Protective equipment
Read More >>

Processing and Characterization of Lightweight Syntactic Materials

Conventional composite materials, in which a matrix material is reinforced by particulates, whiskers, and/or continuous fibers, have long been of interest as potential materials solutions to engineering needs. Typically, the benefits of these reinforcements are observed for cases of tensile loading, with only minimal improvement for cases of compressive loading. As a result, recent attention has grown in the use of hollow spheres as a potential reinforcement in metallic systems.

Posted in: Briefs, Aerospace, Metallurgy, Composite materials, Lightweight materials, Materials properties, Tensile Strength
Read More >>

Mechanical Characterization and Finite Element Implementation of the Soft Materials Used in a Novel Anthropometric Test Device for Simulating Underbody Blast Loading

Anthropomorphic test devices (ATDs) have been used in automotive safety research since the 1970s to predict injuries. ATDs must repeatedly perform under a dynamic range of loading rates and reliably distinguish between injuries ranging from minor to severe.

Posted in: Briefs, Aerospace, Finite element analysis, Foams, Anthropometric test devices, Military vehicles and equipment
Read More >>

Stress-Corrosion Cracking and Corrosion Fatigue Impact of IZ-C17+Zinc-Nickel on 4340 Steel

The protection of cathodic metallic materials used for aircraft components, like 4340, Aermet 100, and PH 13-8 corrosion-resistant steel, is critical to keeping the steel from pitting and cracking due to exposure to the operating environment. Two important properties are resistance to stress-corrosion cracking (SCC) and corrosion fatigue. These are insidious failure mechanisms that can lead to part failure in service.

Posted in: Briefs, Aerospace, Corrosion, Fatigue, Nickel alloys, Steel, Zinc alloys
Read More >>

Sensitivity Simulation of Compressed Sensing Based Electronic Warfare Receiver Using Orthogonal Matching Pursuit Algorithm

Electronic Intelligence Receiver (ELINT) is an important component in electronic warfare (EW) and layer sensing. The information it provides by constant surveillance can be used to detect, track and classify signals across the electromagnetic spectrum. The proper identification and reaction to the threat can avoid disaster and assure spectrum dominance for Air Force systems.

Posted in: Briefs, Aerospace, Electronics & Computers, RF & Microwave Electronics, Transmitters/Receivers
Read More >>