Tech Briefs

Inter-Laboratory Combat Helmet Blunt Impact Test Method Comparison

As the medical community learns more about brain injury, the importance of blunt impact mitigation becomes more apparent. As such, it is critical to make sure that research labs are not only capable of performing testing in this field, but also show inter-laboratory consistency and reproducibility. This study is a comparison between the two validated blunt impact testing labs (Aberdeen Test Center (ATC) and National Technical Systems (NTS) Chesapeake Testing Services (CTS)), and Natick Soldier Research Development and Engineering Center (NSRDEC).

Posted in: Briefs, Aerospace
Read More >>

Hydraulic Testing of Polymer Matrix Composite 102mm Tube Section

The objective of this research was to hydraulically pressurize the internal diameter of one 102mm Polymer Matrix Composite (PMC) over-wrapped cylinder up to 25,000 pounds per square inch (psi) and during pressurization, in real time, collect and store pressure and strain data simultaneously. Strain data must be captured from the inside diameter of the oil filled metallic cylinder and from the outside diameter of the composite over-wrap material.

Posted in: Briefs, Aerospace
Read More >>

Permeation Tests on Polypropylene Fiber Materials

The Toxic Industrial Chemical/Toxic Industrial Material (TIC/TIM) Task Force MFR#1 published in February 2009 focuses on inhalation hazards in an operational environment and provides a list of compounds prioritized based on toxic hazard and the likelihood of an encounter. With these types of vapor threats, cartridge-based air purifying respirators are used to protect the warfighter against chemical exposure. Traditional air purification materials often rely on porous carbons such as activated carbon or activated charcoal. Ongoing efforts seek to improve the performance of carbon materials in air purification applications as well as provide alternative materials.

Posted in: Briefs, Aerospace
Read More >>

Low-Cost Ground Sensor Network for Intrusion Detection

Perimeter surveillance of forward operating locations, such as Forward Arming and Refueling Points (FARPs), is crucial to ensure the survivability of personnel and materiel. FARPs are frequently located well outside the protective cover of the main forward operating bases. Therefore, they must provide their own organic perimeter defenses. Such defenses are manpower intensive. Research shows how cheap, remote, unattended sensors using commercial off-the-shelf (COTS) components can help reduce the manpower requirement for this task and yet not compromise the security of the operating location.

Posted in: Briefs, Aerospace
Read More >>

Co-Prime Frequency and Aperture Design for HF Surveillance, Wideband Radar Imaging, and Nonstationary Array Processing

A co-prime array uses two uniform linear subarrays to construct an effective difference coarray with certain desirable characteristics, such as a high number of degrees-of-freedom for DOA estimation. In this research, the co-prime array concept has been generalized with two operations.

Posted in: Briefs, Aerospace
Read More >>

Converting Existing Copper Wire Firing System to a Fiber-Optically Controlled Firing System for Electromagnetic Pulsed Power Experiments

After extensive review from the US Army Research Laboratory (ARL) Electrical Safety Office, it was determined that the existing firing system in Experimental Facility 167 (EF 167) was not adequate to safely perform pulsed-power experiments with gunpowder- or air-driven guns. This firing line used solid copper wire, which provided a continuous electrical conduction path between the high-voltage capacitor in the test chamber and the firing/control room, where personnel are stationed when experiments are performed (Figure 1). This poses a safety risk since high voltage can travel from the test chamber and potentially result in personnel injuries and damaged equipment.

Posted in: Briefs, Aerospace
Read More >>

In-Network Processing on Low-Cost IoT Nodes for Maritime Surveillance

The effective distribution of offensive weapon capabilities to naval units at the tactical edge is a critical focus for Navy leaders. A direct byproduct of this priority is the need to employ sensor and data collection systems that can effectively guide the targeting of that offensive capability. In the recent past, wireless sensor networks have received limited use in the maritime domain due to the exploratory nature of technology, high system complexity and the high cost of system deployment. With the Internet-of-Things revolution, commercially available hardware and software components can be used to build low-cost, reliable, disposable wireless sensor networks that can leverage in-network processing schemes to greatly expand the intelligence collection footprint.

Posted in: Briefs, Aerospace
Read More >>