Tech Briefs

Deep Installation Method for Three-Component Seismic Sensors

Successful sensor installation is important, as it directly affects how the sensor will perform. If conducted incorrectly, it could seriously degrade the data received and collective system performance. This is especially pertinent for three-component (3C) seismic sensors that have the additional parameters of orientation and leveling in addition to the need to be well-coupled to the surrounding media.

Posted in: Briefs, Aerospace, Defense, Data Acquisition, Detectors, Sensors, Transducers
Read More >>

Simulation of Active Imaging Systems

Active imaging systems offer the promise of significantly improved tactical performance compared to passive military systems operating in adverse ground, air, and underwater/ maritime environments. These improvements would include, but are not limited to:

Posted in: Briefs, Aerospace, Data Acquisition, Defense, Imaging, Lasers & Laser Systems, Simulation Software
Read More >>

Characterization of Bore Temperatures and Stresses in Small Caliber Gun Barrels

Currently in the small arms community, with the push for lighter, stronger barrels with improved life, a more complete understanding of the bore's thermal and structural behavior is required in order to not only improve future barrel design but to more thoroughly and accurately assess barrels in the current inventory.

Posted in: Briefs, Aerospace, Data Acquisition, Defense, Data Acquisition, Detectors, Sensors, Simulation Software, Instrumentation, Measuring Instruments, Test & Measurement
Read More >>

Modular Biosensor Patch

Researchers are identifying new biomarkers to help monitor cognition and stress in the human body and enhance human performance. Traditional biomarkers like heart rate, temperature, oxygen partial pressure, blood glucose, electrolyte concentration, and others have been correlated with cognition and stress states. However, the correlation is indirect. Molecular biomarkers with stronger and more specific links are preferred.

Posted in: Briefs, Aerospace, Defense, Fluid Handling, MEMs, Medical, Patient Monitoring, Biosensors, Data Acquisition, Detectors, Sensors
Read More >>

Evaluation of Aeronautical Design Standard – 33 Using a UH-60A Black Hawk

In 1982, the U.S. Army Aeroflightdynamics Directorate (AFDD), then assigned under the U.S. Army Aviation Systems Command (AVSCOM), began development of a new handling qualities specification for military rotorcraft. This effort resulted in the U.S. Army's initial Aeronautical Design Standard–33 (ADS-33A), “Handling Qualities Requirements for Military Rotorcraft,” published in May 1987. It was initially applied to the RAH-66 Comanche Helicopter program, meaning the handling qualities requirements generally related more to scout and attack classes of rotorcraft. As more data became available and lessons learned emerged from using ADS-33A, refinements were implemented into ADS-33B and ADS-33C).

Posted in: Briefs, Aerospace, Data Acquisition, Instrumentation, Test & Measurement, Transportation
Read More >>

Circuit Models for Robust, Adaptive Neural Control

This project seeks to reproduce the neural circuits used by the nematode Caenorhabditis elegans for locomotion. Caenorhabditis elegans is a small (~1.2 millimeter) nematode found in rotting fruit in many parts of the world. It feeds on bacteria and is neither parasitic nor pathogenic. Although capable of sexual reproduction, most laboratory strains reproduce primarily as self-fertilizing hermaphrodites, with each adult hermaphrodite producing approximately 300 progeny (Figure 1).

Posted in: Briefs, Aerospace, Physical Sciences, Instrumentation, Test & Measurement
Read More >>

Pulsed Microwave Plasma Instrumentation for Investigation of Plasma-Tuned Multiphase Combustion

Strategies to control solid rocket propellant regression rate require a robust throttling technique applicable to high performance propellant formulations. Currently, several methods to control and throttle either motors or subscale propellant strands exist, including chamber pressure control (e.g. pintle nozzles or rapid depressurization quench), infrared laser irradiation of the burning surface to increase burning rates, development of inherently unstable combustion chamber geometries (producing either local pressure or velocity perturbations), and electrically sensitive hydroxylammonium nitrate (HAN)-based formulations in which burning rate is controlled by a voltage potential. However, these techniques are limited in that they either can only be used with low flame temperature (low specific impulse) propellants, result in low propulsion system mass fraction (pintle), are only capable of producing a single perturbation, or are formulation specific.

Posted in: Briefs, Aerospace, Energy, Materials, Power Transmission, Propulsion, RF & Microwave Electronics, Instrumentation
Read More >>