Features

Data-Centric Network Integration Takes Headaches Out of Avionic Upgrades

Avionics systems are becoming more powerful and more dependent upon data exchanged between instruments. These instruments and subsystems reside on a network and must share time-critical data to achieve their mission. For example, targeting systems require real-time input of aircraft speed and attitude, as well as position and velocity data of the target. At the same time, additional bandwidth is required for data from onboard systems, such as GPS, airspeed and directional gyro, flight control systems, and dozens of other instruments and subsystems. As a result, network traffic is high, and potential data interactions can be highly complex. This complexity makes real-time integration of the data from disparate instruments during operational missions a significant challenge. Furthermore, upgrades of avionics and software applications during the useful life of the airframe means that new subsystems must be seamlessly integrated with legacy subsystems. In other words, data paths, interactions, and integration are not fixed forever. Today, aircraft systems typically are constructed to provide point-to-point communications between instruments and control systems that require realtime data. This approach has a significant impact on the complexity of the system and its subsequent maintainability. If an instrument is upgraded or replaced, the interfaces between it and other directly connected devices have the potential to change, requiring significant recoding and retesting.

Posted in: Application Briefs, Application Briefs, Electronics & Computers, Architecture, Avionics
Read More >>

Multi-Cores: The Gateway to Next-Gen SBCs and Blades

With the introduction of Intel Core microarchitecture into embedded systems, history could very well repeat itself. The company that invented the microprocessor in 1971 and created the very first micro-controller in 1976 is about to revolutionize the embedded space once again. By bringing the power of parallel processing to embedded developers in an open-standards-based building block architecture, Intel is hoping to break down the cost barriers while taking embedded systems performance to new levels that once were reserved only for expensive computer systems specifically designed for symmetric multiprocessing (SMP), while also accomplishing unrivaled levels of efficiency.

Posted in: Articles, Articles, Board-Level Electronics, Electronics & Computers, Architecture, Embedded software
Read More >>

Beamforming System Eases Crowded Wireless Spectrum

Beamforming is critical to enable initiatives by the U.S. Federal Communications Commission (FCC) to increase spectrum capacity and provide additional cellular service and coverage through satellite and terrestrial systems. The key technology for this application is beamforming, which electronically steers data streams to and from a satellite via a combination of an array of antennas on the satellite and very sophisticated, ground-based computational engines.

Posted in: Articles, Articles, Board-Level Electronics, Electronics & Computers, Antennas, Telecommunications, Waveguides, Satellites
Read More >>

SOA in Practice: Model-Driven Repositories Fill the Gap Between Concept and Implementation

In the past, network-based applications were pretty simple. A networked server ran a monolithic application that users accessed via a basic GUI (graphical user interface). Today, organizations struggle to develop feature-rich, network-based applications while also facing business pressure to minimize timescales, maximize quality, and work with legacy systems hosted on different platforms.

Posted in: Articles, Articles, Board-Level Electronics, Electronics & Computers, Design processes, Architecture, Human machine interface (HMI)
Read More >>

How to Design an Embedded RDBMS Search

As the cost of micro-disk and NAND Flash continue to drop, devices are storing more and more data. It is common now for a person's MP3 player to have more storage than their laptop. But this increase in storage capacity has not been matched with advances in the user interface. Typically, users still wrestle with a folder-based interface to find the data they want, searching by a few vendor-defined categories such as artist, album, and genre. But a new class of embedded database manage- ment systems (DBMS) is emerging to allow end users to search the way people think, rather than in this stat- ic manner. With a RAM footprint ranging from a few tens to a few hundred kilobytes, these products enable developers to deliver this sophisti- cated search on mobile devices. So how do they work? How do you write an embedded application to use a relational DBMS (RDBMS)? While there are a few kinds of DBMS, the relational model has tri- umphed over all the others, largely because it abstracts the data struc- tures so that applications don't have to know them. A relational database management system offers a standard, high-level query language that allows access to data by content, not by pointer or location and offset.

Posted in: Application Briefs, Application Briefs, Board-Level Electronics, Electronics & Computers, Architecture, Human machine interface (HMI), Data management
Read More >>

WIN-T: The Warfighter's Communications Backbone for Today and Tomorrow

The battlefield of the future will integrate all elements into one networked force, enabling communication among soldiers and commanders on the land, at sea, in the air, and at fixed command posts. Developed by a team led by General Dynamics C4 Systems and Lockheed Martin, the Warfighter Information Network - Tactical (WIN-T) project is the tactical communications backbone for the warfighter, both today and for the future. WIN-T supports voice, video, and data applications, enabling the soldier to stay connected anytime and anywhere by providing mobility and reliable bandwidth. Leveraging communications technologies such as cellular, wireless LAN, satellite, and VoiceOver IP, WIN-T links weapons, intelligence, surveillance, and reconnaissance, while remaining mobile, scalable, modular, and secure.

Posted in: Articles, Aerospace, Satellite communications, Telecommunications systems, Military vehicles and equipment
Read More >>

Open-Standard Multicomputers Address Next-Generation Multi-Function Radar Applications

Next-generation radar applications will drive performance demands that will have architectural implications for radar computing and electronics. Advanced multi-function radar (MFR) systems, which will be deployed in harsh and demanding environmental conditions inside unmanned aerial vehicles (UAVs), manned aircraft, and ship- and ground-based radar systems must simultaneously provide multi-mode search, multi-target tracking, synthetic aperture radar (SAR) imaging, and space time adaptive processing (STAP). Both the performance and ruggedization requirements make it challenging to service MFR applications using yesterday's commercial- off-the-shelf (COTS) technologies.

Posted in: Articles, Aerospace, Architecture, Radar, Systems engineering, Durability, Reliability
Read More >>