500 Gallon LOX Trailers

Essex Industries, Inc.
St. Louis, MO

Essex Industries recently received an order from the United States Air Force for 500 Gallon LOX Trailers. Shipment of the 32 trailers was scheduled to begin in August and run through February of 2018. The USAF will deploy most of these units at domestic bases, as well as US bases in Oman, Japan, South Korea and Italy.

Posted in: Application Briefs, Defense, Life support systems, Oxygen equipment, Suppliers, Military aircraft, Military vehicles and equipment, Trailers

Using System Simulation to Manage Increasing Thermal Loads on Aircraft Fuel Systems

Today’s modern military fighter jets are like “a flying thermos bottle” according to Steve Iden, AFRL Invent Program Manager [1]. Many engineers have been saddled with trying to put the thermal loading constraints of these fighter jets on ice. This places increasing demands on utilizing the fuel system as a heat sink to dissipate thermal loads coming from onboard electronics, oil and hydraulic systems, avionics bay cooling, and weapons modules. Engineers today are looking to simulation to help tackle these design challenges, and they have more power than ever with simulating fuel systems to evaluate feasible system designs with given requirements on thermal power loading, fuel capacity, and tank geometry. With a given set of key performance metrics and limits on a design, the design space can be quickly explored to find optimum metrics such as flight mission duration or required component sizing to meet thermal load requirements.

Posted in: Articles, Aerospace, Defense, Computer simulation, Thermal management, Fuel systems, Military aircraft

Ensuring the Compliance of Avionics Software with DO-178C

Given the needs to meet the most stringent requirements for reliability, safety, and security resulting in lengthy software development schedules, aerospace and defense projects have become among the most challenging to complete. In response to the increasing size and complexity of software used in airborne systems, the guidance document for certifying such systems has gone through numerous revisions with the latest being DO-178C.

Posted in: Articles, Aerospace, Defense, Avionics, Computer software / hardware, Certification

Microwave Photonic Notch Filter

Interference mitigation is crucial in modern radio frequency (RF) communications systems with dynamically changing operating frequencies, such as cognitive radios, modern military radar, and electronic warfare (EW) systems. To protect sensitive RF receivers in these systems, frequency agile RF filters that can remove interferers or jammers with large variations in frequency, power, and bandwidth are critically sought. Unfortunately, an RF bandstop or notch filter that can simultaneously provide high resolution, high peak attenuation, large frequency tuning, and bandwidth reconfigurability does not presently exist. Microwave photonic (MWP) filters are capable of tens of gigahertz tuning and have advanced in terms of performance, but most are limited in stopband rejection due to the challenge in creating a high-quality-factor optical resonance used as the optical filter. To achieve MWP filters with similar performance to state-of-the-art RF filters in terms of isolation bandwidth and rejection is still very challenging, especially in compact integrated photonic chip footprint.

Posted in: Articles, Aerospace, Defense, Radar, Telecommunications systems, Waveguides

The Rapid Rise of Beryllium-Aluminum Alloys in Aerospace

Enhanced performance operating envelopes for aerospace platforms continue to challenge industry limits. Aerospace platform operators demand extreme performance in harsh environments from the aircraft, UAVs, and satellites they deploy today: lighter weight, greater strength, superior fuel efficiency and operational range, vibration-mitigated platforms, low coefficients of thermal expansion, better corrosion resistance — the list goes on.

Posted in: Articles, Aerospace, Defense, Aircraft structures, Aluminum alloys, Beryllium, Materials properties

Aeroacoustic Simulation Delivers Breakthroughs in Aircraft Noise Reduction

Aircraft manufacturers face increasingly stringent standards for reducing community noise. Conventional aircraft development methods based on engineering experience, past designs and flight testing will not suffice to meet future noise reduction targets. Computational Fluid Dynamics (CFD) software based on so-called Reynolds-averaged Navier-Stokes (RANS) methods has revolutionized aerodynamics engineering, but is insufficient for high-fidelity aeroacoustic simulation. However, the Lattice-Boltzmann-based technology of Exa Corporation’s PowerFLOW software provides aeroacoustic simulation accuracy comparable to wind tunnels and flight testing.

Posted in: Articles, Aerospace, Defense, Computational fluid dynamics, Noise pollution, Acoustics, Aircraft

Towed Airborne Plume Simulator

Arnold Engineering Development Complex
Arnold Air Force Base, TN
For more info click here

A team of engineers at AEDC are supporting the continued development and testing of the Towed Airborne Plume Simulator (TAPS), a simulator that can be towed behind aircraft for testing missile warning and infrared countermeasure systems. Most recently the AEDC TAPS team assisted the Air Force Research Laboratory with a mission in Australia.

Posted in: Application Briefs, Aerospace, Defense, Simulation and modeling, Exhaust emissions, Aircraft operations, Test equipment and instrumentation