Features

The Ins and Outs of Spaceflight Passive Components and Assemblies

RF and microwave components deployed in spaceflight applications can experience hundreds of degrees of temperature variation, massive amounts of radiation, and can be expected to operate at an elevated level, sometimes for decades. The demands of operating in a space environment bring unique challenges and unforgiving reliability requirements. Designing passive components to meet these rigorous operation criteria necessitates a high level of design expertise, qualifications/certifications, and testing capability.

Posted in: Articles, Aerospace, Defense, RF & Microwave Electronics, Electronic equipment, Durability, Reliability, Total quality management, Spacecraft
Read More >>

Upgraded Electronic Flight Bag System

Astronautics Corporation of America
Milwaukee, WI
414-449-4000
www.astronautics.com

Astronautics Corporation of America has been selected to provide an improved and upgraded electronic flight bag (EFB) system on all fielded and future production Boeing 787 Dreamliner airplanes. The new Block Point Five (BP5) EFB will be a form/fit replacement for Astronautics’ current Boeing EFB. The BP5 will give Boeing 787 operators additional functionality and will be compatible for use throughout all phases of airplane operations.

Posted in: Application Briefs, Aviation, Defense, Electronics & Computers, Stability control, Electronic control systems, Spacecraft
Read More >>

Helicopter Vibration Control System

LORD Corporation
Cary, NC
877 ASK LORD (275 5673)
www.lord.com

LORD Corporation recently announced product qualification for their Improved Vibration Control System (IVCS) for the Boeing H-47 Chinook helicopter. Under contract with Boeing since Sept. 2013, LORD has now completed all program milestones and received final qualification approval for the state-of-the-art patented system that controls steady state and transient vibration on the twin-engine tandem rotor heavy-lift helicopter.

Posted in: Application Briefs, Aviation, Defense, Electronic control systems, Vibration, Rotary-wing aircraft
Read More >>

Army Explores 3-D Printing's Future Applications

A soldier heads back to camp, grabs a power bar and unloads his gear. The power bar, which was "printed" minutes earlier, contains all the nutrients his body currently needs, according to sensors that are embedded in his uniform. While this may sound like a scene from a sci-fi movie, engineers and scientists at the Army Research, Development and Engineering Command (RDECOM) are looking at ways to use additive manufacturing (aka 3-D printing) to make it a reality.

Posted in: Articles, News, Defense, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Composites, Materials, Metals, Plastics
Read More >>

Additive Manufacturing: How 3D Printing Will Transform the A&D Support Chain

3D printing, or additive manufacturing (AM), is quickly becoming a 'must have' for aerospace and defense (A&D) manufacturers rather than just a luxury R&D project with the A&D sector now contributing 12 percent of 3D printing's $3.1 billion global revenue. A&D companies began experimenting with 3D printing as early as 1988, and industry leaders are now starting to recognize the unique capabilities of 3D printing, and searching for ways to exploit them. The U.S. Navy is currently working on 3D manufacturing at sea, which would revolutionize the military support chain, while in civil aviation, companies such as Boeing and Airbus have been using the process to manufacture components for over two years.

Posted in: Articles, Aerospace, Defense, Manufacturing & Prototyping, Aircraft structures, Maintenance, Repair and Service Operations, Logistics, Additive manufacturing, Marine vehicles and equipment, Military vehicles and equipment
Read More >>

Advances in Lightweight Electronics Protection

Lightweighting continues to be a key topic for the aerospace, avionics and defense industries as new metals and composites are being integrated into end products and assemblies with the goal of decreasing overall system weight. As technologies continue to evolve, with components often decreasing in size and increasing in complexity, the materials used to manufacture and protect the latest components and systems are also improving. Whether used in commercial or military aircraft, rockets, satellites, terrestrial or water vessels, or the latest in unmanned air, land and sea vehicles; systems within these industries must meet similar requirements – assemblies, components and electronics must be both lightweight and designed to withstand harsh operating conditions.

Posted in: Articles, Aerospace, Defense, Electronics, Coatings & Adhesives, Avionics, Electronic equipment, Lightweight materials, Lightweighting, Military vehicles and equipment
Read More >>

Powering Outer Space: An In-Depth Look at Aerospace Battery Technology

With space’s extreme environments, there is never a one-size-fits-all battery. Nor is any space mission ever the same, so customized batteries for each operation are essential. Saft, has been powering outer space for more than 50 years. Saft’s first battery was launched into space in 1966 aboard the D1A “Diapason”, which was powered with nickel cadmium (Ni-Cd) technology. To date they are the only battery manufacturer to supply all battery technologies used in space: Nickel (Ni-Cd, Ni-H2), primary lithium (Li-SO2, Li-SOCl2 and Li-MnO2) and rechargeable lithium or lithium-ion (Li-ion).

Posted in: Articles, Aerospace, Batteries, Power Supplies, Batteries, Supplier assessment, Spacecraft
Read More >>