Designing VME Power Systems With Standard Modules

Military electronics continue to push the performance envelope in all directions. Each new system design faces the same challenges: the need for more processing power, tighter specs, and shorter development time. Continual advances in system performance often require similar advances in the power system. VME architecture is common in many military applications, as systems can readily be built around standard or custom circuit cards. Off-the-shelf VME power supplies are available, but often don’t meet the necessary requirements or haven’t kept up with recent performance advances. Usually, neither schedule nor budget allow for a full custom power supply development effort.

Posted in: Articles, Aerospace, Defense, Architecture, Power electronics, Military vehicles and equipment

Optical Ice Sensors for UAVs

The perverse thing about ice on the tailplane of a general aviation aircraft is that the pilot sits and looks forward, but the tailplane is aft. You can’t see it from the cockpit.

Posted in: Articles, Aerospace, Defense, Optics, Sensors and actuators, Icing and ice detection, Unmanned aerial vehicles

Rotorcraft Icing Computational Tool Development

The formation of ice over lifting surfaces can affect aerodynamic performance. In the case of helicopters, this loss in lift and the increase in sectional drag forces will have a dramatic effect on vehicle performance. The simulation of rotorcraft flow fields is a challenging multidisciplinary problem that lags in development over its counterpart in the fixed wing world by more than a decade. Successful aerodynamic simulation of a rotor/fuselage system requires the modeling of unsteady three-dimensional flows that include transonic shocks, dynamic stall with boundary layer separation, vortical wakes, blade/wake and wake/wake interactions, rigid body motion, blade deformations and the loss of performance caused by ice accretion.

Posted in: Articles, Aerospace, Defense, Computer simulation, Icing and ice detection, Aerodynamics, Rotary-wing aircraft

Curled RF MEMS Switches For On-Chip Design

Microelectromechanical system (MEMS) switches are active components in most electronic equipment. Radio frequency (RF) MEMS are used in wireless personal communication devices, satellite communication, and phased array antennas. MEMS are ideal for these applications because of their low weight, small surface area, low volume, high isolation, large frequency range, linearity, and low power consumption.

Posted in: Articles, Aerospace, Defense, Microelectricmechanical device, Switches

Design Software Supports BAE System’s Mixed-Signal Chip Design

BAE Systems is a global defense and aerospace company, delivering products and services for air, land, and naval forces, as well as electronics, information technology solutions, and customer support services. In partnership with AWR Corp. (El Segundo, CA), MIT, Cornell University, and Alcatel-Lucent Bell Labs, BAE Systems has been working to produce a new breed of devices that embeds photonic devices into silicon- based integrated circuits (ICs), enabling computer chips to perform digital, radio frequency, and photonic functions in a single chip.

Posted in: Articles, Aerospace, Defense, CAD / CAM / CAE, Computer software / hardware, Defense industry, Silicon alloys

Upmast Radar Systems

Kelvin Hughes
Enfield, UK
+44 19 9280 5200

Kelvin Hughes recently installed its new SharpEye™ upmast radar system on four new vessels commissioned by the Trinidad and Tobago Defence Force. The Damen Stan Patrol 5009 Coastal Patrol Vessels are all now fitted with a Kelvin Hughes Advanced Surveillance System incorporating a SharpEye™ X-Band radar, located upmast in a carbon composite housing with a stealth profile, as well as a tactical radar display. The four craft - the TTS Speyside, Quinam, Moruga and Carli Bay - will patrol Trinidad and Tobago's coastal waters and are also capable of operating in its Exclusive Economic Zone.

Posted in: Application Briefs, Aerospace, Defense, Radar, Marine vehicles and equipment, Military vehicles and equipment

Virtual Environment-Based Training Tools

Charles River Analytics
Cambridge, MA

Charles River Analytics Inc., a developer of intelligent systems solutions, has received a follow-on contract from the US Navy to develop more efficient training tools in virtual environments. Shiphandling Educator Assistant for Managing Assessments in Training Environments, or SEAMATE, supports experienced instructors as they monitor and interact with larger numbers of students in the classroom, increasing training efficiency while reducing costs and maintaining effectiveness. The contract is valued at just under $1 million with a contract extension option close to $500,000, if exercised.

Posted in: Application Briefs, Aerospace, Defense, Virtual reality, Education, Marine vehicles and equipment

Antenna Design Turns Entire Vehicles into Broadcasting Equipment

High-frequency antennas transmit radio waves across vast distances and even over mountain ranges using very little energy, making them ideal for military communications. These devices, however, need to be huge to operate efficiently. Instead of adding more bulk, however, University of Wisconsin–Madison engineers are working to increase the effective size of antennas by turning the military vehicles that carry them into transmitters,using the structures that support the antennas themselves to help broadcast signals.

Posted in: News, Aerospace, Communications, Defense

Army Scientists Synthesize High-Performing Energetic Material

Scientists at the U.S. Army Research Laboratory recently synthesized a new material called bis-isoxazole tetranitrate, or BITN, with potential applications in propulsion and lethality.

Posted in: News, Aerospace, Defense, Materials, Propulsion

High-Tech Bird Watching Could Lead to Shapeshifting Airplane Wings

An international team of engineers and biologists will gain unprecedented insights into how birds fly so efficiently and then use that knowledge to build unmanned aircraft with shapeshifting wings. These planes should be lighter, faster and dramatically more maneuverable than today’s stiff-winged aircraft.

Posted in: News, Aerospace, Defense