Home

Discovery Could Lead to Cleaner, More Efficient Jet Engines

Researchers at The Ohio State University found a way to improve the high-temperature properties of superalloys used in jet engines. The method tailors an alloy’s composition and exposes it to high heat and pressure to prevent microscopic defects from forming, actually making the alloy stronger. This “phase transformation strengthening” eliminates the formation of defects and decreases alloy deformation by half. When an engine can run at very high temperatures, it consumes its fuel more thoroughly and produces lower emissions.

Posted in: INSIDER, News, Aerospace, Aviation, Defense
Read More >>

NRL Develops Novel Monolayer Ferroelectric Hybrid Structures

Scientists at the U.S. Naval Research Laboratory (NRL), Materials Science and Technology Division, have demonstrated that the intensity and spectral composition of the photoluminescence emitted from a single monolayer of tungsten disulphide (WS2) can be spatially controlled by the polarization domains in an adjacent film of the ferroelectric material lead zirconium titanate (PZT). These domains are written in the PZT using a conductive atomic force microscope, and the photoluminescence (PL) is measured in air at room temperature. Because the polarization domain wall width in a ferroelectric can be as low as 1-10 nm, this approach enables spatial modulation of PL intensity and the corresponding carrier populations with potential for nanoscale resolution.

Posted in: News, Defense, Electronic Components, Electronics
Read More >>

US Navy Synthesizes Slime to Assist Military Personnel

A team of U.S. Navy scientists and engineers at Naval Surface Warfare Center, Panama City Division (NSWC PCD) have successfully re-created a natural material used for marine wildlife defense to assist military personnel.

Posted in: News, Defense, Coatings & Adhesives, Materials
Read More >>

Satellite Communications Ball Offers More Bandwidth, Greater Portability

While it may resemble a giant beach ball, the inflatable ground antenna transmit and receive (GATR) ball is actually the Army's latest piece of satellite communications equipment. The technology is so new that the 369th Sustainment Brigade's GATR ball has a serial number in the single digits. Designed to be lighter and more compact than traditional, rigid satellite dishes, the GATR ball can be broken down into just a few cases and hand carried anywhere in the world. The self-contained system can then be inflated and set up in less than two hours, ready to provide a variety of communication services.

Posted in: News, Communications, Wireless, Defense
Read More >>

Development of High Quality 4H-SiC Thick Epitaxy for Reliable High Power Electronics Using Halogenated Precursors

Development of robust semiconductor devices with high energy efficiency and reliability is a key objective towards 'Energy Conversion and Power Management ' for naval system applications. The goal of this research is to create the fundamental knowledge needed for the development of novel approaches to synthesize high-quality, thick SiC epitaxial layers (> 100μm) for reliable high voltage (≥10kV) / high power (>100 kW) electronics for navy ship applications.

Posted in: Briefs, Aerospace, Defense, Electronics & Computers, Semiconductor devices, Research and development, Materials properties, Marine vehicles and equipment
Read More >>

Silicon Based Mid-Infrared SiGeSn Heterostructure Emitters and Detectors

Enhancing the performance of GeSn p-i-n photodiodes using gold metal nanostructures.

The goal of this research project was to advance the science and technology of silicon-based photonic devices using SiGeSn heterostructures. Such devices work in mid-IR spectral range and form the foundation for mid-IR photonics that enable on-chip systems for applications ranging from vibrational spectroscopy, chem/bio sensing, medical/health uses, to environmental monitoring. This project was mostly directed toward improving GeSn detectors with the use of surface plasmons induced by carefully designed metal nanostructures. The goal was to replace the current mid-IR detectors that are usually photodiodes made from narrow bandgap III-V or II-VI semiconductor compounds such as InGaAs, InSb, HgCdTe (MCT) or type-II In-GaAs/InGaSb superlattice. These photodiodes are incompatible with the CMOS process and cannot be easily integrated with Si electronics. The GeSn mid-IR detectors developed in this project are fully compatible with the CMOS process.

Posted in: Briefs, Electronics & Computers, Semiconductors & ICs, Integrated circuits, Sensors and actuators, Silicon alloys
Read More >>

Reconfigurable Electronics and Non-Volatile Memory Research

The purpose of this research was to investigate non-volatile memory device technologies that could be applied to reconfigurable electronics applications to provide power reduction, radiation tolerance, smaller size, and improved reliability over existing non-volatile memory devices. The research encompasses: 1) materials and device design, and 2) fabrication and testing of the devices. The types of memory devices that were investigated are divided into three categories:

Posted in: Briefs, Electronics & Computers, Semiconductors & ICs, Electronic equipment, Research and development, Reliability
Read More >>

Energy-Filtered Tunnel Transistor: A New Device Concept Toward Extremely Low Energy Consumption Electronics

Altering the thermal characteristics of semiconductors can prolong battery life.

Excessive heat dissipation (or power consumption) of modem integrated circuits is an undesirable effect that imposes substantial limitations on the performance of many electronic devices. For example, the level of heat dissipation /power consumption of smart phones, tablets, and laptops is such that it prohibits a continuous and prolonged operation of these devices, requiring frequent recharging. Large power consumption of electronic devices requires large energy storage in batteries, increasing the battery weights that soldiers carry in their missions or the weights of remote controlled equipment such as unmanned aerial vehicles (UAVs). Therefore, technology that enables electronic devices to operate with extremely small energy consumption promises a broad range of commercial, military and space applications.

Posted in: Briefs, Electronics & Computers, Transistors, Energy conservation
Read More >>

Open Standard Middleware Enables New HPEC Solutions

The military embedded computing landscape has been transformed from where it was 20 years ago — and that has been almost entirely enabled by the ability of prime contractors, systems integrators, and OEMs to leverage the products of COTS manufacturers who take leading edge commercial technologies and apply them successfully to the world of military computing. A look at the commercial landscape today reveals cell phones that are putting vast amounts of location- aware information — and the ability to process that information — directly into the hands of consumers. The Internet of Things has become a deployable reality, with data derived from millions of connected sensors.

Posted in: Articles, Aerospace, Communications, Defense, Electronics & Computers, Sensors, Architecture, Computer software / hardware, Internet of things, Military vehicles and equipment
Read More >>

Cooling Your Embedded System: What Can Your Open Standard Architecture Handle?

Embedded computing systems for Mil/Aero applications are often conduction-cooled in an ATR or nonstandard chassis. However, there are many designs that require 19" rackmount systems with forced-air cooling. As more processing performance is packed into tight spaces, enclosures that provide advanced cooling options are increasingly common.

Posted in: Articles, Aerospace, Defense, Thermal Management, Computer software / hardware, Embedded software, Cooling, Mountings, Fans
Read More >>