Home

Development of High Quality 4H-SiC Thick Epitaxy for Reliable High Power Electronics Using Halogenated Precursors

Development of robust semiconductor devices with high energy efficiency and reliability is a key objective towards 'Energy Conversion and Power Management ' for naval system applications. The goal of this research is to create the fundamental knowledge needed for the development of novel approaches to synthesize high-quality, thick SiC epitaxial layers (> 100μm) for reliable high voltage (≥10kV) / high power (>100 kW) electronics for navy ship applications.

Posted in: Briefs, Aerospace, Defense, Electronics & Computers, Semiconductor devices, Research and development, Materials properties, Marine vehicles and equipment
Read More >>

Silicon Based Mid-Infrared SiGeSn Heterostructure Emitters and Detectors

Enhancing the performance of GeSn p-i-n photodiodes using gold metal nanostructures.

The goal of this research project was to advance the science and technology of silicon-based photonic devices using SiGeSn heterostructures. Such devices work in mid-IR spectral range and form the foundation for mid-IR photonics that enable on-chip systems for applications ranging from vibrational spectroscopy, chem/bio sensing, medical/health uses, to environmental monitoring. This project was mostly directed toward improving GeSn detectors with the use of surface plasmons induced by carefully designed metal nanostructures. The goal was to replace the current mid-IR detectors that are usually photodiodes made from narrow bandgap III-V or II-VI semiconductor compounds such as InGaAs, InSb, HgCdTe (MCT) or type-II In-GaAs/InGaSb superlattice. These photodiodes are incompatible with the CMOS process and cannot be easily integrated with Si electronics. The GeSn mid-IR detectors developed in this project are fully compatible with the CMOS process.

Posted in: Briefs, Electronics & Computers, Semiconductors & ICs, Integrated circuits, Sensors and actuators, Silicon alloys
Read More >>

Reconfigurable Electronics and Non-Volatile Memory Research

The purpose of this research was to investigate non-volatile memory device technologies that could be applied to reconfigurable electronics applications to provide power reduction, radiation tolerance, smaller size, and improved reliability over existing non-volatile memory devices. The research encompasses: 1) materials and device design, and 2) fabrication and testing of the devices. The types of memory devices that were investigated are divided into three categories:

Posted in: Briefs, Electronics & Computers, Semiconductors & ICs, Electronic equipment, Research and development, Reliability
Read More >>

Energy-Filtered Tunnel Transistor: A New Device Concept Toward Extremely Low Energy Consumption Electronics

Altering the thermal characteristics of semiconductors can prolong battery life.

Excessive heat dissipation (or power consumption) of modem integrated circuits is an undesirable effect that imposes substantial limitations on the performance of many electronic devices. For example, the level of heat dissipation /power consumption of smart phones, tablets, and laptops is such that it prohibits a continuous and prolonged operation of these devices, requiring frequent recharging. Large power consumption of electronic devices requires large energy storage in batteries, increasing the battery weights that soldiers carry in their missions or the weights of remote controlled equipment such as unmanned aerial vehicles (UAVs). Therefore, technology that enables electronic devices to operate with extremely small energy consumption promises a broad range of commercial, military and space applications.

Posted in: Briefs, Electronics & Computers, Transistors, Energy conservation
Read More >>

Army Demonstrates Hoverbike Prototype

The US Army demonstrated the flying capabilities of a unique rectangular-shaped quadcopter. The Joint Tactical Aerial Resupply Vehicle (JTARV), also known as a hoverbike, may one day make it possible for soldiers on the battlefield to order resupply and then receive those supplies rapidly.

Posted in: News, Aeronautics, Aerospace, Defense
Read More >>

3D Printers Create Tomorrow’s Rocket Engines

Startup company Tri-D Dynamics LLC, a startup with ties to Purdue University, plans to use 3D printers as well as other additive manufacturing processes to make future rocket engines that show promise in being faster and less expensive to produce than traditional methods. The 3D printer would create small rocket engines for satellites.

Posted in: News, Aerospace, Defense, Manufacturing & Prototyping, Rapid Prototyping & Tooling
Read More >>

Nano-Modified Aerospace Composites Have Improved Conductivity

Research indicates the potential of a carbon fiber reinforced plastic that is made multifunctional while still maintaining its structural integrity. Novel functionality including sensors, energy harvesting, lighting, and communication antennae can now be integrated into the structure of the composite to usher in a new era in composite technology.

Posted in: News, Aerospace
Read More >>

Simulation Software Improves Pilot Training

Providing pilots with the best possible preparation for extreme situations is the goal of new simulation software. The program that combines flow mechanics and flight dynamics in real time. The numerical model is extremely flexible and does not depend on stored flow data. External conditions such as topography, global wind speeds, and aircraft type are input. During the simulation, the algorithms use that data to continuously compute the interacting flow field at the virtual aircraft’s current location.

Posted in: News, Aerospace, Simulation Software
Read More >>

Professor Simulates Bomb Blasts to Study How Things Break Apart

How much force does it take to shatter a Humvee, a soldier’s body armor, or a submarine?

Posted in: News, Research Lab
Read More >>

High-Speed, Autonomous Surface Patrol Capability Demonstrated

After a year of internal research and development, the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, recently conducted a large, at-sea demonstration of swarming unmanned surface vessels (USV). The experiment — done in collaboration with the Surface Targets Branch of the Naval Air Warfare Center Weapons Division, Port Hueneme, California — was designed to advance the state of the art of collaborative, autonomous USV behaviors to higher speeds and a larger numbers of vessels.

Posted in: News, Robotics
Read More >>