Home

AFRL Seeks Ways to Prevent Hearing Loss in Military Environments

 

In the 1988 movie “Good Morning, Vietnam,” character Adrian Cronauer, a Saigon- based military disc jockey, performs an on-air skit in which he contacts an artilleryman in the field and offers to play a song for him. “Anything,” the artilleryman screams into the phone, “Just play it loud!”

Posted in: Briefs, Medical
Read More >>

Dynamic Air Battle Planning

An air tasking order (ATO) implements air operations supporting the joint force commander’s campaign by assigning aircraft and munitions to targets and specifying the timing and grouping of air missions. Currently, creating an ATO is a routine, but manually intensive process that underutilizes the skills of the Master Air Attack Plan (MAAP) chief and his or her team. The current ATO creation software employs constraint-based linear programming and indicates only if a proposed mission is valid; it does not identify whether the ATO is the optimal plan given the MAAP team’s objectives, target list, and available inventories of aircraft and munitions. Software engineers from 21st Century Technologies (Austin, Texas) are developing two products— ATO-Link and ATO-Stream—to automate and optimize the ATO creation process, shorten the ATO development cycle to minutes, and reduce mundane planning work. AFRL’s Small Business Innovation Research program is administering both project efforts.

Posted in: Briefs, Software
Read More >>

Adaptable Miniature Initiation System Technology

The ever-changing nature of warfare presents constant challenges to weapon system designers, who must carefully consider various perspectives of mutual importance. Specifically, designers must address constraints associated with newly developed aircraft, such as the F-22 and F-35, which carry their stores internally and thus have size limitations on their payloads. Weapons designers must also recognize the weight of political pressures that fuel concerns about a given weapon’s potential to cause collateral damage to civilian populations. At the same time, they must respond adequately to warfighter demand for the flexibility to employ the most effective weapon against a given target.

Posted in: Briefs, Electronics & Computers
Read More >>

AFRL Supports C-5A Evaluation Program

AFRL materials integrity experts are collaborating with the Aeronautical Systems Center’s C-5 Systems Group, Warner Robins Air Logistics Center (WR-ALC), and Air Mobility Command (AMC) in an effort to disassemble and analyze components of an out-of-service C-5A aircraft. Members of the 653rd Combat Logistics Support Squadron at WR-ALC extracted the major components from the aircraft and shipped them to participating laboratories for analysis (see Figure 1). This study is the first of its kind performed on the C-5A, the US Air Force’s (AF) largest cargo aircraft. General John W. Handy (USAF, Retired), former AMC commander, requested the study in order to determine if the C-5A’s structure and components are fulfilling original design predictions and to evaluate the aircraft’s long-term maintenance requirements.

Posted in: Briefs, Materials
Read More >>

Microelectromechanical Systems Switch Simulator

AFRL materials scientists developed a highly sophisticated laboratory instrument that simulates the effects of physical forces and electrical current on microelectromechanical systems (MEMS) switches. The simulator’s performance has induced revolutionary insights into microscale switches—how they work and what causes them to fail.

Posted in: Briefs, Materials
Read More >>

Strain-Induced Porosity Model

AFRL scientists developed advanced computer models to improve the processing and quality of titanium alloys used in manufacturing gas turbine engine parts and critical structural components for military aircraft. AFRL transferred both the models and the basic materials knowledge to titanium mill suppliers to help them eliminate strain-induced porosity (SIP)—also known as cavitation—in billet products (see Figure 1) and finished parts. The models also increase product yield by reducing the amount of scrap material, which helps lower production costs.

Posted in: Briefs, Materials
Read More >>

Conductive Polymeric Nanocomposite Materials

AFRL scientists have developed a method for uniformly dispersing carbon nanofibers throughout polymeric materials to increase their conductivity. Engineers will be able to employ the resulting polymeric nanocomposites in conductive paints, coatings, caulks, sealants, adhesives, fibers, thin films, thick sheets, tubes, and large structural components needed for both aerospace and industry applications.

Posted in: Briefs, Materials
Read More >>

Composite Material Fire Safety Training Course

AFRL scientists and engineers, working cooperatively with experts from academia and the firefighting community, have developed a Composite Material Fire Safety training program designed to improve the safety and effectiveness of Air Force, Department of Defense (DoD), and civilian firefighters. The team created the program to educate firefighters on the methodologies they need to rapidly and safely extinguish composite materials fires.

Posted in: Briefs, Materials
Read More >>

Automated Material Deposition Chamber

AFRL materials scientists have acquired an automated deposition chamber (see figure on next page) that enables them to simultaneously or sequentially deposit solid-lubricant coatings onto target objectives from any of three deposition sources. The chamber also incorporates AFRLinvented technology entailing a hybrid, magnetron-assisted, pulsed-laser deposition (PLD) process. The scientists acquired the chamber to study protective solid-lubricant coatings capable of resisting wear and corrosion in (relatively) large friction components, including gears and bearings, and preventing static friction in microelectromechanical systems devices such as switches and connectors.

Posted in: Briefs, Materials
Read More >>

Computational Model of a Plasma Actuator

Controlling subsonic aerodynamic flow through the use of plasma actuators is an active area of research in both the Air Force (AF) and the general scientific community. A typical plasma actuator consists of two offset electrodes separated by a dielectric material (see Figure 1). Plasma forms as the voltage difference between the electrodes ionizes the surrounding gas. The electric field can then direct the charged particles in the plasma to transfer momentum to the surrounding, neutral (nonionized) air. Most of this momentum transfer occurs as a result of particle collisions. Experiments have demonstrated the ability of plasma actuators to reattach separated airflow at high angles of attack (see Figure 2), as well as to induce flow movement in an initially stationary air mass.1,2,3,4,5

Posted in: Briefs, Software
Read More >>