Electronics & Computers

The Ins and Outs of Spaceflight Passive Components and Assemblies

RF and microwave components deployed in space flight applications can experience hundreds of degrees of temperature variation, massive amounts of radiation, and can be expected to operate at an elevated level for sometimes decades. The demands of operating in a space environment bring many unique challenges and unforgiving reliability requirements; therefore, designing passive components to meet these rigorous operation criteria necessitates a high level of design expertise, qualifications/certifications, and testing capability.

Posted in: White Papers, White Papers, Aerospace, Defense, Electronics & Computers, RF & Microwave Electronics

Overcoming RF Signal Generation Challenges with New DAC Technologies

This features our new AWG5200, with high signal fidelity and the ability to scale up to 32 or more channels with multi-unit synchronization, all at an affordable price.

Posted in: White Papers, White Papers, Aerospace, Electronics & Computers, RF & Microwave Electronics

Next-Generation Fire Support Systems Boost Lethality

Soldiers view live-stream full-motion video from unmanned aerial vehicles via a smartphone. They access 3-D digital maps to send precision target coordinates. Soldiers are now relying on these advanced technologies to improve lethality and maintain battlefield dominance. These are among the improvements that will be embedded in future fire-support capabilities because the Army has started testing four upgraded systems for its Field Artillery units to provide more accurate and timely fire support to maneuver formations.

Posted in: News, Communications, Wireless, Data Acquisition, Defense, Electronics & Computers

Radar Signal Generation with a High-Performance AWG

Radar ensures the safety and security of the skies, and lives depend on it. That’s why radar design measurements call for high frequency, realistic stimulus signals. You need to create these complex radar test signals at high frequencies, but what’s the best solution?

Posted in: White Papers, White Papers, Aerospace, Defense, Electronics & Computers, RF & Microwave Electronics

Introduction to Electromagnetic Compatibility

By definition, Electromagnetic Compatibility (EMC) describes the ability of a system, a piece of equipment, or some other electrical device that utilizes electromagnetic energy, to operate in its intended environment without suffering an unacceptable degradation in its performance, or negatively impacting the ability of another device to perform its intended function.

Posted in: White Papers, White Papers, Aeronautics, Defense, Electronics & Computers

NRL Develops Novel Monolayer Ferroelectric Hybrid Structures

Domains consisting of electric polarization dipoles are written in a checkerboard pattern into a thin film of lead zirconium titanate (PZT) with a conductive atomic force microscope, and imaged with the same instrument (left panel). Both intensity and spectral distribution of the photoluminescence emitted from a monolayer of tungsten disulphide (WS2) transferred onto the PZT surface is strongly modulated by these polarization domains (right panel). (U.S. Naval Research Laboratory)

Scientists at the U.S. Naval Research Laboratory (NRL), Materials Science and Technology Division, have demonstrated that the intensity and spectral composition of the photoluminescence emitted from a single monolayer of tungsten disulphide (WS2) can be spatially controlled by the polarization domains in an adjacent film of the ferroelectric material lead zirconium titanate (PZT). These domains are written in the PZT using a conductive atomic force microscope, and the photoluminescence (PL) is measured in air at room temperature. Because the polarization domain wall width in a ferroelectric can be as low as 1-10 nm, this approach enables spatial modulation of PL intensity and the corresponding carrier populations with potential for nanoscale resolution.

Posted in: News, Defense, Electronic Components, Electronics, Integrated circuits, Microelectromechanical devices, Microscopy, Semiconductor devices

Open Standard Middleware Enables New HPEC Solutions

The military embedded computing landscape has been transformed from where it was 20 years ago — and that has been almost entirely enabled by the ability of prime contractors, systems integrators, and OEMs to leverage the products of COTS manufacturers who take leading edge commercial technologies and apply them successfully to the world of military computing. A look at the commercial landscape today reveals cell phones that are putting vast amounts of location- aware information — and the ability to process that information — directly into the hands of consumers. The Internet of Things has become a deployable reality, with data derived from millions of connected sensors.

Posted in: Articles, Aerospace, Communications, Defense, Electronics & Computers, Sensors, Architecture, Computer software and hardware, Internet of things, Military vehicles and equipment

Cooling Your Embedded System: What Can Your Open Standard Architecture Handle?

Embedded computing systems for Mil/Aero applications are often conduction-cooled in an ATR or nonstandard chassis. However, there are many designs that require 19" rackmount systems with forced-air cooling. As more processing performance is packed into tight spaces, enclosures that provide advanced cooling options are increasingly common.

Posted in: Articles, Aerospace, Defense, Thermal Management, Computer software and hardware, Embedded software, Cooling, Mountings, Fans

Evaluating Key Certification Aspects of Multicore Platforms for Safety Critical Avionics Applications

High performance, low power consumption and small footprint requirements imposed by the embedded market on the processor industry is causing a definite move away from single-core processors to multicore processors. Multicore processors have been deemed as the future of Size, Weight, and Power (SWaP) constrained applications like military and avionics. They provide higher performance (MHz/W) at lower power. They also allow consolidation of multiple functions/ applications onto a single platform.

Posted in: Articles, Aerospace, Aviation, Defense, Electronics & Computers, Avionics, Computer software and hardware, Safety critical systems, Certification

Upgraded Electronic Flight Bag System

Astronautics Corporation of America Milwaukee, WI 414-449-4000www.astronautics.com

Astronautics Corporation of America has been selected to provide an improved and upgraded electronic flight bag (EFB) system on all fielded and future production Boeing 787 Dreamliner airplanes. The new Block Point Five (BP5) EFB will be a form/fit replacement for Astronautics’ current Boeing EFB. The BP5 will give Boeing 787 operators additional functionality and will be compatible for use throughout all phases of airplane operations.

Posted in: Application Briefs, Aviation, Defense, Electronics & Computers, Stability control, Electronic control systems, Spacecraft