Home

Certifying Composite Designs for Aerospace and Defense

Wherever you find newer and particularly larger aircraft these days, you're seeing the use of composite materials. The latest commercial planes, as well as innovative defense prototypes, demonstrate the awareness of aerospace OEMs regarding the value of composites for stiffness and structural strength exceeding metals, plus weight savings and decreased fuel consumption. The military may have taken an early lead in pushing the use of composites, but now both sectors are fully committed to advancing the technology.

Posted in: Articles, Aerospace, Fuel economy, Composite materials, Certification, Commercial aircraft, Lightweighting, Military aircraft
Read More >>

AuVSI™ XPONENTIAL: ALL THINGS UNMANNED

After a very successful trade show and conference in New Orleans last year, the Association for Unmanned Vehicle Systems International (AUVSI) is bringing this year's event, AUVSI XPONENTIAL 2017 to the Kay Bailey Hutchinson Convention Center in Dallas, TX. The event, which runs from May 8 – May 11, will feature more than 200 presentations and panel discussions focused on all aspects of the unmanned vehicle and robotics market. Over 650 exhibitors representing more than 20 different industries will be showcasing their latest technology to an estimated 7,000 attendees from all over the world.

Posted in: Articles, Aerospace, Artificial intelligence, Career and professional development, Collaboration and partnering, Robotics, Autonomous vehicles, Unmanned aerial vehicles
Read More >>

Reconfigurable Radio Tracks Flights Worldwide

When Malaysia Air Flight 370 disappeared somewhere over the Indian Ocean in 2014, it had flown far beyond radar range. Under a new space-based air tracking system — starting with a reconfigurable radio developed by NASA — no plane would ever be off the grid that way.

Posted in: Application Briefs, Aerospace, Defense
Read More >>

Luminescence Materials as Nanoparticle Thermal Sensors

Particles could be used to record critical temperature history data during agent-defeat weapons testing.

The purpose of this research program was to create and study novel luminescence particles (phosphors} capable of sensing and retaining the time-temperature information to which they were exposed, therefore acting as nano- and microsized thermosensors. The thermometric property is the latent thermoluminescence (TL) signal associated with electron/hole pairs trapped at defect energy levels, which are differently affected by the environmental temperature.

Posted in: Briefs, TSP, Aerospace, Data Acquisition, Defense, Nanotechnology, Photonics, Sensors
Read More >>

Using Dempster-Shafer Fusion for Personnel Intrusion Detection

New technique enables the use of ultrasonic micro-doppler and PIR sensors for improved security.

The Dempster-Shafer (D-S) mass function is used in effect as a common representation of heterogeneous sensor data. In order to cast each data source in this form, first the raw data is reduced to points in a multi-dimensional feature space specific to each sensor. From there, an approach is outlined that uses a distance metric in the feature space to assign mass to each state in the class hierarchy. This hierarchy begins with the full frame of discernment which represents complete uncertainty. From there it proceeds as an n-array tree broken down into further subclasses until the finest granularity of classification for the specific sensor is reached.

Posted in: Briefs, TSP, Aerospace, Defense, Detectors, Sensors, Mathematical models, Sensors and actuators, Data management, Reliability
Read More >>

Using Fisher Information Criteria for Chemical Sensor Selection via Convex Optimization Methods

Technique developed for simple linear sensor systems can be applied to broader array scenarios.

The design of chemical sensor arrays from the standpoint of chemical sensor selection and error quantification has historically proceeded as an ad hoc process. Frequently, chemical sensors are developed not as general purpose sensing devices, but as analyte or chemical class specific detectors. When such single purpose devices are integrated together as a chemical sensor array, it is unclear a priori how well they will function in concert with each other to provide expanded capabilities, an observation that is true of the integration of analytical instruments as well.

Posted in: Briefs, TSP, Aerospace, Sensors
Read More >>

Development of an Optically Modulated Scatterer Probe for a Near-Field Measurement System

Using near-field radiation patterns to diagnose antenna array defects.

Near-field radiation patterns are useful in diagnosing antenna array defects, measuring far-field antenna patterns where the far-field is prohibitively far, and locating field concentrations in high power microwave applications, which could lead to material breakdown. There are two categories of near-field measurements: direct and indirect. In a direct measurement, the field from the antenna-under-test (AUT) is directly measured by a probe whereas, in an indirect measurement, the field is inferred from the scattering off of a probe that is placed in the near-field.

Posted in: Briefs, TSP, Aerospace, Sensors
Read More >>

Angular Random Walk Estimation of a Time-Domain Switching Micromachined Gyroscope

Achieving near navigation-grade performance without the need to produce resonators with very high quality factors.

The primary metrics that prohibit the use of microelectromechanical systems (MEMS) gyroscopes for navigation-grade inertial navigation units (IMUs) are angle random walk (ARW), bias instability, and scale factor instability. The need for MEMS gyroscopes is due to their decreased cost, size, weight, and power (CSWaP) constraints compared to current navigation-grade solutions. Note that to avoid confusion, while in a statistical context a random walk describes a particular type of random process, ARW is used herein to quantify the effects of white, or Gaussian, noise processes on the rate estimate of a gyroscope.

Posted in: Briefs, TSP, Aerospace, Sensors
Read More >>

New Products: April 2017 Aerospace & Defense Techonology

Rate Indicator/Totalizer

The Hoffer (Elizabeth City, NC) HIT-4U Rate Indicator/Totalizer is being offered with additional options providing the user with enhanced functionality and flexibility in a compact enclosure. The choice of a NEMA 4X enclosure joins the explosion-proof enclosure options and is now available flow meter mounted or remote mounted on a 2" or smaller pipe. The NEMA 4X enclosure offers options for local Modbus access ports via USB port or hardwired access through strain relief for data log retrieval and configuration of the unit.

Additional user friendly features of the unit include 12-point linearization, dual set point alarm output configurable for rate or total and a wide range of engineering unit display icons. The HIT-4U is offered in battery or loop-power with a lithium battery backup to ensure continuous, reliable performance.

Posted in: Products, Aerospace, Defense
Read More >>

Submarine Radar Technology

Kelvin Hughes Enfield, UK +44 19 9280 5200www.kelvinhughes.com

Kelvin Hughes recently announced that it has developed a way to bring all the benefits of its innovative SharpEye™ radar technology to submarines.

Posted in: Application Briefs, Defense, Radar, Marine vehicles and equipment
Read More >>