Local Situational Awareness Design and Military and Machine Vision Standards

Real-time video is playing an increasingly important role in a range of military local situational analysis (LSA) applications to help improve surveillance and intelligence of possible threats while keeping troops out of harm’s way.

Posted in: White Papers, White Papers, Defense, Imaging, Data Acquisition, Sensors

Imaging Detonations of Explosives

Using high-speed camera pyrometers to measure and map fireball/shock expansion velocities.

An effort has been made within the US Army Research Laboratory (ARL) to extract quantitative information on explosive performance from high-speed imaging of explosions. Explosive fireball surface temperatures are measured using imaging pyrometry (2-color 2-camera imaging pyrometer; full-color single-camera imaging pyrometer). Framing cameras are synchronized with pulsed laser illumination to measure fireball/shock expansion velocities, enabling calculation of peak air-shock pressures. Multicamera filtering at different wavelengths enables visualization of light emission by some reactant species participating in energy release during an explosion. Measurement of incident and reflected shock velocities is used to calculate shock energy on a target.

Posted in: Briefs, TSP, TSP, Aerospace, Imaging

Laser Integration on Silicon Photonic Circuits Through Transfer Printing

New fabrication approach allows the massively parallel transfer of III-V coupons to a silicon photonic target wafer.

The purpose of this project was to develop a transfer printing process for the massively parallel integration of III-V lasers on silicon photonic integrated circuits. Silicon has long offered promise as the ultimate platform for realizing compact photonic integrated circuits (PICs). That promise stems in part from the material's properties: the high refractive-index contrast of silicon allows strong confinement of the optical field, increasing light-matter interaction in a compact space—a particularly important attribute for realizing efficient modulators and high-speed detectors.

Posted in: Briefs, TSP, TSP, Aerospace, Photonics

Determining Detection and Classification Potential of Munitions Using Advanced EMI Sensors in the Underwater Environment

Electromagnetic induction could be used to locate and characterize potentially dangerous sunken metallic objects.

Hazardous ordnance items are present along coastlines and in rivers and lakes in waters shallow enough to cause concerns for human recreational and industrial activities. The presence of water makes it difficult to detect and remove these hazardous legacies induced from wars, military training and deliberate disposal. Various techniques have been proposed to detect and characterize Unexploded Ordnances (UXO) and discarded military munitions (DMM) in the underwater environment including acoustic waves, magnetometery, and electromagnetic induction (EMI).

Posted in: Briefs, TSP, TSP, Aerospace, Sensors

High Energy Computed Tomographic Inspection of Munitions

Inspection system provides additional level of quality assurance for R&D, reverse engineering, and malfunction investigations.

An advance computed tomography (CT) system was recently built for the U.S. Army Armament Research, Development and Engineering Center, Picatinny Arsenal, NJ, for the inspection of munitions. The system is a charged coupled device (CCD) camera based CT system designated with the name “experimental Imaging Media” (XIM). The design incorporated shielding for use up to 4MeV x-ray photons and integrated two separate cameras into one single field of view (FOV). Other major distinguishing characteristics include its processing functions to digitally piece the two cameras together, use of advanced artifact reduction principles, performing reconstruction simultaneously during acquisition, and its development in accurate beam hardening corrections through digital means.

Posted in: Briefs, TSP, TSP, Aerospace, Photonics

Terahertz (THz) Radar: A Solution For Degraded Visibility Environments (DVE)

Operating at higher frequencies than other types of radar produces tighter beams and finer resolution.

An accurate view of the physical world is frequently vital. For example, rotary wing aircraft pilots must have knowledge of the terrain in order to safely fly their aircraft. Therefore, systems capable of generating images of the environment of sufficient quality to facilitate the decision process are necessary. The product of such a system is illustrated in Figure 1.

Posted in: Briefs, TSP, TSP, Aerospace, Imaging

Development of Photoacoustic Sensing Platforms

Research focuses on sensor miniaturization and detection of chemical targets both proximally and at range.

In recent years, photoacoustic spectroscopy (PAS) has emerged as an attractive and powerful technique well suited for sensing applications. The development of high-power radiation sources and more sophisticated electronics, including sensitive microphones and digital lock-in amplifiers, have allowed for significant advances in PAS. Furthermore, photoacoustic (PA) detection of IR absorption spectra using modern tunable lasers offers several advantages, including simultaneous detection and discrimination of numerous molecules of interest. Successful applications of PAS in gases and condensed matter have made this a notable technique and it is now studied and employed by scientists and engineers in a variety of disciplines.

Posted in: Briefs, TSP, TSP, Aerospace, Photonics

Fiber Optic Rotary Joints Add a Spin to Sensing, Mobile, and Robotic Fiber Systems

To the passing optical signals, fiberoptic rotary joints (FORJs) are nothing more than fiber connectors, which provide connection between one or multiple fibers. Their unrestricted ability to rotate, however, gives them a critical role in many sensing, mobile, and robotic fiber systems such as ROVs (remotely operated vehicles), aerostat radars, submarines, satellite antennae, OCT (optical coherence tomography), mining vehicles, cranes, wind turbines, robotic vehicles, broadcasting (mobile cameras), etc. This article discusses some of the applications where optical rotary joints are indispensable.


Download White Paper

Posted in: White Papers, White Papers, Photonics

Concept Enables Solar UAV “Autonomous Soaring”

Holding the photovoltaic UAV are two members of the Solar-Soaring research flight crew: Dan Edwards (left) and Trent Young. (U.S. Naval Research Laboratory)

Naval Research Laboratory engineers want to improve the ability of unmanned platforms to support a 24/7 information, surveillance, and reconnaissance (ISR) mission. A new concept being tested consists of a photovoltaic array integrated into the center wing panel of the PV-SBXC aircraft as a drop-in replacement to the original wing. A power management and distribution system converts the power from the solar arrays into DC voltage that the electric motor can use for propulsion, or to recharge a smart battery.

Posted in: News, Aerospace, Aviation, Defense

DO-254 Benefits Versus Costs

DO-254, the design assurance guideline for airborne electronic hardware, is considered by many to be a simple cut/paste of DO-178, its avionics software sibling. Surely, as with wine and beer, both are fermented liquids which become increasingly expensive with increased complexity. While similarities abound, so do their many differences. And truly, DO-254 is the benefactor, or bane, of avionics projects the world over. But is DO-254 really unduly expensive? Does it add value? Will it improve safety and reliability? Does it have benefits? What are the true costs versus benefits? These important questions are answered herein.

Posted in: White Papers, White Papers, Aerospace, Software